Results 121 to 130 of about 2,434,213 (315)
Low‐cycle fatigue damage in Mn–Mo–Ni reactor pressure vessel steel is examined using a combined electron backscatter diffraction and positron annihilation lifetime spectroscopy approach. The study correlates texture evolution, dislocation substructure development, and vacancy‐type defect formation across uniform, necked, and fracture regions, providing
Apu Sarkar +2 more
wiley +1 more source
A wood‐based magnetic and conductive material called Magwood (MW), capable of blocking almost 99.99% of electromagnetic waves (in the X‐band frequency range), is synthesized using a simple, solvent‐free process. MW is lightweight, resists water, and is flame‐retardant, making it a promising alternative for shielding electronics. The rapid proliferation
Akash Madhav Gondaliya +3 more
wiley +1 more source
Exploiting hardware capabilities in interior point methods [PDF]
Csaba Mészáros +2 more
core +1 more source
Influence of an Argon/Silane Atmosphere on the Temperature of a Thermal Plasma
The influence of a silane‐doped argon atmosphere on the chemical composition and temperature of a thermal nontransferring argon plasma is investigated using optical emission spectroscopy. As a result of the high amount of free electrons resulting from the stepwise ionization and dissociation of the silane molecule, even a silane addition of 0.01 vol ...
Lena Kreie +4 more
wiley +1 more source
The formation of nonmetallic inclusions (NMIs) was investigated in this study, carrying out immersion tests for 30 min at a temperature of 1600°C with liquid high‐silicon electrical steel (Si ≈ 3 mass‐%) and different MgO–C refractories. Conventional MgO–C refractories were considered, as well as MgO–C refractories containing MgO–C recyclate and ...
Lukas Neubert +6 more
wiley +1 more source
A New and Efficient Interior Point Method Based on a Weight Vector for Solving LCCO Problems
In this paper, we propose a new full-Newton step weighted interior point method for solving linearly constrained convex optimization problems (LCCO).
Nawel Boudjellal, Djamel Benterki
doaj +1 more source
The work demonstrates that strategic wall‐thickness grading in diamond triply periodic minimal surface lattices enables precise tuning of deformation and failure behavior under compression. Different gradation patterns guide how and where the structure collapses, improving energy absorption or promoting controlled brittle failure.
Giovanni Rizza +3 more
wiley +1 more source
A lack of standard approaches for testing and reporting the performance of metal halide perovskites and organic semiconductor radiation detectors has resulted in inconsistent interpretation of performance parameters, impeding progress in the field. This Perspective recommends key metrics and experimental details, which are suggested for reporting in ...
Jessie A. Posar +8 more
wiley +1 more source
This study uncovers the unexplored role of intermolecular interactions in multiphoton absorption in coordination polymers. By analyzing [Zn2tpda(DMA)2(DMF)0.3], it shows how the electronic coupling of the chromophores and confinement in the MOF enhance two‐and three‐photon absorption.
Simon Nicolas Deger +11 more
wiley +1 more source
Interior point methods in optimal control
This paper deals with Interior Point Methods (IPMs) for Optimal Control Problems (OCPs) with pure state and mixed constraints. This paper establishes a complete proof of convergence of IPMs for a general class of OCPs. Convergence results are proved for primal variables, namely state and control variables, and for dual variables, namely, the adjoint ...
openaire +2 more sources

