Results 181 to 190 of about 435,388 (276)

Microenvironment Self‐Adaptive Nanoarmor to Address Adhesion‐ and Colonization‐Related Obstacles in Impaired Intestine Promote Bacteriotherapy Against Parkinson's Disease

open access: yesAdvanced Science, EarlyView.
A microenvironment self‐adaptive nanoarmor is developed to effectively address the adhesion‐ and colonization‐related challenges posed by multiple physiological and pathological characteristics in the intestine. L. plantarum@MPN@CS showed significant therapeutic potential in treating Parkinson's disease (PD), a model for extraintestinal disorders, as ...
Limeng Zhu   +6 more
wiley   +1 more source

Effect of improved Yupingfeng powder prescription on interleukin-33/suppression of tumorigenicity 2 pathway in mice with ovalbumins-induced allergic rhinitis. [PDF]

open access: yesJ Tradit Chin Med
Xiaochun L   +11 more
europepmc   +1 more source

RUNX2 Activation in Fibro/Adipogenic Progenitors Promotes Muscle Fibrosis in Muscular Dystrophy

open access: yesAdvanced Science, EarlyView.
This study revealed a novel role of the chemokine‐TGF‐β1‐RUNX2 axis in determining the fate of FAP differentiation and modulating muscle fibrosis in patients and mice with muscular dystrophies. ABSTRACT Clinical evidence indicates concurrent muscle inflammation and fibrosis in muscular dystrophies (MDs); however, the molecular mechanisms underlying ...
Pengkai Wu   +12 more
wiley   +1 more source

Exploring the significance of interleukin-33/ST2 axis in minimal change disease. [PDF]

open access: yesSci Rep, 2023
Kanazawa N   +5 more
europepmc   +1 more source

Nuclear Factor I‐B Delays Liver Fibrosis by Inhibiting Chemokine Ligand 5 Transcription

open access: yesAdvanced Science, EarlyView.
This study identifies the transcription factor Nuclear Factor I‐B (NFIB) as a key suppressor of liver fibrosis. NFIB expression declines during hepatic stellate cell activation, and its overexpression reduces fibrosis in mice models. The mechanism involves NFIB directly repressing chemokine C─C motif ligand 5 (CCL5), thereby alleviating oxidative ...
Qianqian Chen   +14 more
wiley   +1 more source

ETV1 Drives CD4+ T Cell‐Mediated Intestinal Inflammation in Inflammatory Bowel Disease Through Amino Acid Transporter Slc7a5

open access: yesAdvanced Science, EarlyView.
This study identifies the transcription factor ETV1 as a key driver of CD4⁺ T cell‐mediated intestinal inflammation in inflammatory bowel disease (IBD). ETV1 promotes CD4⁺ T cell activation, proliferation, and Th17 differentiation by activating the amino acid transporter SLC7A5, fueling metabolic reprogramming.
Yan Shi   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy