Results 251 to 260 of about 1,444,628 (322)
Amyloidogenic Peptide Fragments Designed From Bacterial Collagen‐like Proteins Form Hydrogel
This study identified amyloidogenic sequence motifs in bacterial collagen‐like proteins and exploited these to design peptides that self‐assemble into β‐sheet fibers and form hydrogels. One hydrogel supported healthy fibroblast growth, showing promise for biocompatible materials. Our work demonstrates that bacterial sequences can be harnessed to create
Vamika Sagar +5 more
wiley +1 more source
Coagulative granular hydrogels are composed of packed thrombin‐functionalized microgels that catalyze the conversion of fibrinogen into a secondary fibrin network, filling the interstitial voids. This bio‐inspired approach stabilizes the biomaterial to match the robustness of bulk hydrogels without compromising injectability, mimicking the initial ...
Zhipeng Deng +16 more
wiley +1 more source
Cell Calcification Models and Their Implications for Medicine and Biomaterial Research
Calcification, is the process by which the tissues containing minerals are formed, occurring during normal physiological processes, or in pathological conditions. Here, it is aimed to give a comprehensive overview of the range of cell models available, and the approaches taken by these models, highlighting when and how methodological divergences arise,
Luke Hunter +5 more
wiley +1 more source
A Human Neural Tube Model Using 4D Self‐Folding Smart Scaffolds
Induced pluripotent stem cells (iPSCs) exhibit features comparable to the inner cell mass of the human embryo. iPSCs are applied to a novel self‐folding 4D‐Neural Tube (4D‐NT) structure that mimics the neurulation process. This 4D‐NT model recapitulates early events of human neural development and represents a platform to explore neurodevelopmental ...
Claudia Dell'Amico +8 more
wiley +1 more source
Replicating aging and senescence‐related pathophysiological responses in kidney organoids remains a significant challenge. Human adult renal tubular organoid, tubuloids, are successfully developed recapitulating cellular senescence that is the central pathophysiological mechanism of chronic kidney disease (CKD).
Yuki Nakao +20 more
wiley +1 more source
Geometrically Tunable Scaffold‐Free Muscle Bioconstructs for Treating Volumetric Muscle Loss
Volumetric muscle loss is associated with traumatic muscle resulting in permanent functional impairment. Mold‐based, scaffold‐free, high‐density muscle tissue bioconstructs are developed in customizable geometric shapes and sizes. The transplanted rectangular solid‐shaped muscle bioconstructs improved muscle force recovery and tissue regeneration in ...
Bugra Ayan +8 more
wiley +1 more source
Intermediate Filaments as a Target of Signaling Mechanisms in Neurotoxicity
Ariane Zamoner, Regina Pessoa‐Pureur
openalex +2 more sources
Bioprinting Organs—Science or Fiction?—A Review From Students to Students
Bioprinting artificial organs has the potential to revolutionize the medical field. This is a comprehensive review of the bioprinting workflow delving into the latest advancements in bioinks, materials and bioprinting techniques, exploring the critical stages of tissue maturation and functionality.
Nicoletta Murenu +18 more
wiley +1 more source
Despite significant efforts in developing novel biomaterials to regenerate tissue, only a few of them have successfully reached clinical use. It has become clear that the next generation of biomaterials must be multifunctional. Smart biomaterials can respond to environmental or external stimuli, interact in a spatial‐temporal manner, and trigger ...
Sonya Ghanavati +12 more
wiley +1 more source

