Results 141 to 150 of about 7,835 (281)

What to Make and How to Make It: Combining Machine Learning and Statistical Learning to Design New Materials

open access: yesAdvanced Intelligent Discovery, EarlyView.
Combining machine learning and probabilistic statistical learning is a powerful way to discover and design new materials. A variety of machine learning approaches can be used to identify promising candidates for target applications, and causal inference can help identify potential ways to make them a reality.
Jonathan Y. C. Ting, Amanda S. Barnard
wiley   +1 more source

Accelerating Surface Composition Characterization of Thin‐Film Materials Libraries Using Multi‐Output Gaussian Process Regression

open access: yesAdvanced Intelligent Discovery, EarlyView.
To integrate surface analysis into materials discovery workflows, Gaussian process regression is used to accurately predict surface compositions from rapidly acquired volume composition data (obtained by energy‐dispersive X‐ray spectroscopy), drastically reducing the number of required surface measurements on thin‐film materials libraries.
Felix Thelen   +2 more
wiley   +1 more source

Real-Time Deep-Learning Image Reconstruction and Instrument Tracking in MR-Guided Biopsies. [PDF]

open access: yesJ Magn Reson Imaging
Noordman CR   +5 more
europepmc   +1 more source

Sequence of potentials interpolating between the U(5) and E(5) symmetries [PDF]

open access: green, 2004
Dennis Bonatsos   +4 more
openalex   +1 more source

Deep Learning‐Assisted Design of Mechanical Metamaterials

open access: yesAdvanced Intelligent Discovery, EarlyView.
This review examines the role of data‐driven deep learning methodologies in advancing mechanical metamaterial design, focusing on the specific methodologies, applications, challenges, and outlooks of this field. Mechanical metamaterials (MMs), characterized by their extraordinary mechanical behaviors derived from architected microstructures, have ...
Zisheng Zong   +5 more
wiley   +1 more source

Interpolating sequences for the Nevanlinna and Smirnov classes [PDF]

open access: green, 2002
Andreas Hartmann   +2 more
openalex   +1 more source

A Generalized Framework for Data‐Efficient and Extrapolative Materials Discovery for Gas Separation

open access: yesAdvanced Intelligent Discovery, EarlyView.
This study introduces an iterative supervised machine learning framework for metal‐organic framework (MOF) discovery. The approach identifies over 97% of the best performing candidates while using less than 10% of available data. It generalizes across diverse MOF databases and gas separation scenarios.
Varad Daoo, Jayant K. Singh
wiley   +1 more source

Home - About - Disclaimer - Privacy