Results 141 to 150 of about 2,930,586 (273)

Predicting High‐Resolution Spatial and Spectral Features in Mass Spectrometry Imaging with Machine Learning and Multimodal Data Fusion

open access: yesAdvanced Intelligent Discovery, EarlyView.
A multimodal fusion pipeline predicts high‐resolution ion distributions in imaging mass spectrometry by integrating Fourier transform ion cyclotron resonance, time‐of‐flight matrix‐assisted laser desorption/ionization, and time‐of‐flight secondary ion mass spectrometry data.
Md Inzamam Ul Haque   +7 more
wiley   +1 more source

Inverse Engineering of Mg Alloys Using Guided Oversampling and Semi‐Supervised Learning

open access: yesAdvanced Intelligent Discovery, EarlyView.
End‐to‐end design of engineering materials such as Mg alloys must include the properties, structure, and post‐synthesis processing methods. However, this is challenging when destructive mechanical testing is needed to annotate unseen data, and the processing methods for hypothetical alloys are unknown.
Amanda S. Barnard
wiley   +1 more source

What to Make and How to Make It: Combining Machine Learning and Statistical Learning to Design New Materials

open access: yesAdvanced Intelligent Discovery, EarlyView.
Combining machine learning and probabilistic statistical learning is a powerful way to discover and design new materials. A variety of machine learning approaches can be used to identify promising candidates for target applications, and causal inference can help identify potential ways to make them a reality.
Jonathan Y. C. Ting, Amanda S. Barnard
wiley   +1 more source

Real-Time Deep-Learning Image Reconstruction and Instrument Tracking in MR-Guided Biopsies. [PDF]

open access: yesJ Magn Reson Imaging
Noordman CR   +5 more
europepmc   +1 more source

Accelerating Surface Composition Characterization of Thin‐Film Materials Libraries Using Multi‐Output Gaussian Process Regression

open access: yesAdvanced Intelligent Discovery, EarlyView.
To integrate surface analysis into materials discovery workflows, Gaussian process regression is used to accurately predict surface compositions from rapidly acquired volume composition data (obtained by energy‐dispersive X‐ray spectroscopy), drastically reducing the number of required surface measurements on thin‐film materials libraries.
Felix Thelen   +2 more
wiley   +1 more source

Sequence of potentials interpolating between the U(5) and E(5) symmetries [PDF]

open access: green, 2004
Dennis Bonatsos   +4 more
openalex   +1 more source

Home - About - Disclaimer - Privacy