Results 221 to 230 of about 188,006 (344)

A Sacrificial 3D Printed Vessel‐on‐Chip Demonstrates a Versatile Approach to Model Granulation Tissue

open access: yesAdvanced Healthcare Materials, EarlyView.
A novel method that combines 3D printing and organ‐on‐chip technology enables the creation of hollow channels lined with endothelial cells through a fibroblast‐populated connective tissue matrix. The model supports stable metabolic culture conditions, angiogenic sprouting, and immune cell migration, thereby demonstrating an easy and versatile method to
Jonas Jäger   +7 more
wiley   +1 more source

Microphysiological Systems of Lymphatics and Immune Organs

open access: yesAdvanced Healthcare Materials, EarlyView.
This review surveys recent progress in engineering lymphatic microenvironments and immune organoids within microphysiological systems, emphasizing innovative strategies to recreate the biochemical and biophysical complexity of native lymphatic tissues.
Ishita Jain   +2 more
wiley   +1 more source

Bioengineered Lymphatic Vessels in Synthetic Matrices to Study Breast Cancer Cell Functions

open access: yesAdvanced Healthcare Materials, EarlyView.
Lymphatic vessels are involved in cancer metastasis. To study the interplay between metastasizing cancer cells and lymphatic vessels under highly reproducible conditions, advanced in vitro models are required. In this work, 3D lymphatic networks are formed in biomimetic hydrogels and their interactions with invasive and non‐invasive cancer cell‐lines ...
Rodi Odabasi   +7 more
wiley   +1 more source

Synthetic Cell‐Based Tissues for Bottom‐Up Assembly of Artificial Lymphatic Organs

open access: yesAdvanced Healthcare Materials, EarlyView.
Synthetic cells have emerged as a novel biomimetic approach for fundamental research and therapeutic interventions. T cell activating synthetic cells are able to form 3D tissue‐like structures by self‐assembly into lymphatic bottom‐up tissues (lymphBUT) with tunable biochemical and biomechanical functionalities as well as metabolic activity are ...
Anna Burgstaller   +5 more
wiley   +1 more source

Enhancing Magnetic Hyperthermia at the Cell Membrane by Anchoring 92R‐Functionalized Magnetic Nanoparticles to Low‐Endocytic CCR9 Surface Receptors

open access: yesAdvanced Healthcare Materials, EarlyView.
We present a strategy to enhance magnetic hyperthermia therapy by modulating nanoparticle–cell interactions. Antibody‐functionalized magnetic nanoparticles targeting the low‐internalizing CCR9 receptor enable spatially controlled membrane anchoring, reducing aggregation and maximizing heat generation under alternating magnetic fields.
David Egea‐Benavente   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy