Results 201 to 210 of about 1,116,406 (351)

Targeting ROCK2 to Restore Epileptic Synaptic Networks via Mitophagy Activation: Insights from Translational Imaging of SV2A In Vivo

open access: yesAdvanced Science, EarlyView.
By integrating synaptic vesicle glycoprotein 2A PET imaging and transcriptomics, this study identifies Rho‐associated protein kinase 2 (ROCK2) as a critical regulator of synaptic network dysfunction in temporal lobe epilepsy. Pharmacological ROCK2 inhibition restores synaptic density and enhances mitophagy, thereby reducing seizures and neuronal damage.
Ling Xiao   +14 more
wiley   +1 more source

Type 2 Diabetes‐Associated Phenylacetylglutamine Induces Deleterious Inflammation Cycle in Myeloid Cells through β2 Adrenergic Receptors and Impedes Wound Healing

open access: yesAdvanced Science, EarlyView.
The microbiota‐derived metabolite phenylacetylglutamine (PAGln) is elevated in type 2 diabetes and tightly associated with poor healing in both diabetic and non‐diabetic human patients. PAGln promotes mouse inflammation and impairs healing through a transmissible β2‐adrenergic receptor–mediated trained‐immunity loop.
Lu Huang   +12 more
wiley   +1 more source

Smart Gated Hollow Mesoporous Silica Hydrogel for Targeting Endoplasmic Reticulum Stress and Promoting Periodontal Tissue Regeneration

open access: yesAdvanced Science, EarlyView.
The hollow mesoporous silica loaded with quercetin (HM‐QU@PEG) is combined with a thermosensitive anti‐bacterial matrix (TF127) to prepare HQUP@TF127. HQUP@TF127 effectively eliminates excessive ROS, alleviates endoplasmic reticulum stress, relieves mitochondrial calcium overload, and blocks the p53‐dependent apoptotic cascade. Furthermore, it enhances
Guichun Wang   +14 more
wiley   +1 more source

Tubeless Total Intravenous Anesthesia Spontaneous Ventilation for Adult Suspension Microlaryngoscopy

open access: yesAnnals of Otology, Rhinology and Laryngology, 2018
M. Yoo, A. Joffe, T. Meyer
semanticscholar   +1 more source

FOXM1 Protects Against Myocardial Ischemia‐Reperfusion Injury in Rodent and Porcine Models by Suppressing MKRN1‐Dependent LKB1 Ubiquitination

open access: yesAdvanced Science, EarlyView.
FOXM1 maintains mitochondrial bioenergetic function by inhibiting MKRN1‐mediated ubiquitination of LKB1 in cardiomyocytes. Loss of FOXM1 in cardiomyocytes results in upregulation of MKRN1, which enhances LKB1 ubiquitination and disrupts AMPK signaling and energy metabolism pathways. Conversely, FOXM1 overexpression preserves mitochondrial bioenergetics
Shuai Song   +17 more
wiley   +1 more source

Home - About - Disclaimer - Privacy