Results 31 to 40 of about 20,464 (181)
$\cPA$-isomorphisms of inverse semigroups
A partial automorphism of a semigroup $S$ is any isomorphism between its subsemigroups, and the set all partial automorphisms of $S$ with respect to composition is the inverse monoid called the partial automorphism monoid of $S$.
Goberstein, Simon M.
core +1 more source
ABSTRACT The well‐posedness results for mild solutions to the fractional neutral stochastic differential system with Rosenblatt process with Hurst index Ĥ∈12,1$$ \hat{H}\in \left(\frac{1}{2},1\right) $$ is discussed in this article. To demonstrate the results, the concept of bounded integral contractors is combined with the stochastic result and ...
Dimplekumar N. Chalishajar +3 more
wiley +1 more source
Ordered Regular Semigroups with Biggest Associates
We investigate the class BA of ordered regular semigroups in which each element has a biggest associate x† = max {y | xyx = x}. This class properly contains the class PO of principally ordered regular semigroups (in which there exists x⋆ = max {y | xyx ...
Blyth T.S., Santos M.H. Almeida
doaj +1 more source
Expansions of inverse semigroups [PDF]
AbstractWe construct the freest idempotent-pure expansion of an inverse semigroup, generalizing an expansion of Margolis and Meakin for the group case. We also generalize the Birget-Rhodes prefix expansion to inverse semigroups with an application to partial actions of inverse semigroups.
Lawson, Mark V. +2 more
openaire +1 more source
Duality for Evolutionary Equations With Applications to Null Controllability
ABSTRACT We study evolutionary equations in exponentially weighted L2$$ {\mathrm{L}}^2 $$‐spaces as introduced by Picard in 2009. First, for a given evolutionary equation, we explicitly describe the ν$$ \nu $$‐adjoint system, which turns out to describe a system backwards in time. We prove well‐posedness for the ν$$ \nu $$‐adjoint system. We then apply
Andreas Buchinger, Christian Seifert
wiley +1 more source
Semigroups with inverse skeletons and Zappa-Sz'{e}p products [PDF]
The aim of this paper is to study semigroups possessing $E$-regular elements, where an element $a$ of a semigroup $S$ is {em $E$-regular} if $a$ has an inverse $a^circ$ such that $aa^circ,a^circ a$ lie in $ Esubseteq E(S)$. Where $S$ possesses `enough'
Victoria Gould, Rida-e- Zenab
doaj
Distributive inverse semigroups and non-commutative Stone dualities [PDF]
We develop the theory of distributive inverse semigroups as the analogue of distributive lattices without top element and prove that they are in a duality with those etale groupoids having a spectral space of identities, where our spectral spaces are not
Lawson, Mark V, Lenz, Daniel H
core
Semigroup Closures of Finite Rank Symmetric Inverse Semigroups
We introduce the notion of semigroup with a tight ideal series and investigate their closures in semitopological semigroups, particularly inverse semigroups with continuous inversion.
A. Abd-Allah +35 more
core +1 more source
Equivariant toric geometry and Euler–Maclaurin formulae
Abstract We first investigate torus‐equivariant motivic characteristic classes of toric varieties, and then apply them via the equivariant Riemann–Roch formalism to prove very general Euler–Maclaurin‐type formulae for full‐dimensional simple lattice polytopes.
Sylvain E. Cappell +3 more
wiley +1 more source
Efficient Dynamics: Reduced‐Order Modeling of the Time‐Dependent Schrödinger Equation
Reduced‐order modeling (ROM) approaches for the time‐dependent Schrödinger equation are investigated, highlighting their ability to simulate quantum dynamics efficiently. Proper Orthogonal Decomposition, Dynamic Mode Decomposition, and Reduced Basis Methods are compared across canonical systems and extended to higher dimensions.
Kolade M. Owolabi
wiley +1 more source

