Results 11 to 20 of about 9,217 (165)

Combined spatially resolved metabolomics and spatial transcriptomics reveal the mechanism of RACK1‐mediated fatty acid synthesis

open access: yesMolecular Oncology, EarlyView.
The authors analyzed the spatial distributions of gene and metabolite profiles in cervical cancer through spatial transcriptomic and spatially resolved metabolomic techniques. Pivotal genes and metabolites within these cases were then identified and validated.
Lixiu Xu   +3 more
wiley   +1 more source

Inhibition of acyl‐CoA synthetase long‐chain isozymes decreases multiple myeloma cell proliferation and causes mitochondrial dysfunction

open access: yesMolecular Oncology, EarlyView.
Triacsin C inhibition of the acyl‐CoA synthetase long chain (ACSL) family decreases multiple myeloma cell survival, proliferation, mitochondrial respiration, and membrane potential. Made with Biorender.com. Multiple myeloma (MM) is an incurable cancer of plasma cells with a 5‐year survival rate of 59%.
Connor S. Murphy   +12 more
wiley   +1 more source

Etoposide‐induced cancer cell death: roles of mitochondrial VDAC1 and calpain, and resistance mechanisms

open access: yesMolecular Oncology, EarlyView.
The complex mode of action of the topoisomerase II inhibitor etoposide in triggering apoptosis involves several mechanisms: overexpression of the mitochondrial protein VDAC1, leading to its oligomerization and formation of a large channel that mediates the release of pro‐apoptotic protein; and overexpression of the apoptosis regulators p53, Bax, and ...
Aditya Karunanithi Nivedita   +1 more
wiley   +1 more source

Respiratory complex I‐mediated NAD+ regeneration regulates cancer cell proliferation through the transcriptional and translational control of p21Cip1 expression by SIRT3 and SIRT7

open access: yesMolecular Oncology, EarlyView.
NAD+ regeneration by mitochondrial complex I NADH dehydrogenase is important for cancer cell proliferation. Specifically, NAD+ is necessary for the activities of NAD+‐dependent deacetylases SIRT3 and SIRT7, which suppress the expression of p21Cip1 cyclin‐dependent kinase inhibitor, an antiproliferative molecule, at the translational and transcriptional
Masato Higurashi   +5 more
wiley   +1 more source

TOMM20 as a driver of cancer aggressiveness via oxidative phosphorylation, maintenance of a reduced state, and resistance to apoptosis

open access: yesMolecular Oncology, EarlyView.
TOMM20 increases cancer aggressiveness by maintaining a reduced state with increased NADH and NADPH levels, oxidative phosphorylation (OXPHOS), and apoptosis resistance while reducing reactive oxygen species (ROS) levels. Conversely, CRISPR‐Cas9 knockdown of TOMM20 alters these cancer‐aggressive traits.
Ranakul Islam   +9 more
wiley   +1 more source

Targeting the MDM2‐MDM4 interaction interface reveals an otherwise therapeutically active wild‐type p53 in colorectal cancer

open access: yesMolecular Oncology, EarlyView.
This study investigates an alternative approach to reactivating the oncosuppressor p53 in cancer. A short peptide targeting the association of the two p53 inhibitors, MDM2 and MDM4, induces an otherwise therapeutically active p53 with unique features that promote cell death and potentially reduce toxicity towards proliferating nontumor cells.
Sonia Valentini   +10 more
wiley   +1 more source

Multidimensional OMICs reveal ARID1A orchestrated control of DNA damage, splicing, and cell cycle in normal‐like and malignant urothelial cells

open access: yesMolecular Oncology, EarlyView.
Loss of the frequently mutated chromatin remodeler ARID1A, a subunit of the SWI/SNF cBAF complex, results in less open chromatin, alternative splicing, and the failure to stop cells from progressing through the cell cycle after DNA damage in bladder (cancer) cells. Created in BioRender. Epigenetic regulators, such as the SWI/SNF complex, with important
Rebecca M. Schlösser   +11 more
wiley   +1 more source

Escape from TGF‐β‐induced senescence promotes aggressive hallmarks in epithelial hepatocellular carcinoma cells

open access: yesMolecular Oncology, EarlyView.
Chronic TGF‐β exposure drives epithelial HCC cells from a senescent state to a TGF‐β resistant mesenchymal phenotype. This transition is characterized by the loss of Smad3‐mediated signaling, escape from senescence, enhanced invasiveness and metastatic potential, and upregulation of key resistance modulators such as MARK1 and GRM8, ultimately promoting
Minenur Kalyoncu   +11 more
wiley   +1 more source

TRPM8 levels determine tumor vulnerability to channel agonists

open access: yesMolecular Oncology, EarlyView.
TRPM8 is a Ca2+ permissive channel. Regardless of the amount of its transcript, high levels of TRPM8 protein mark different tumors, including prostate, breast, colorectal, and lung carcinomas. Targeting TRPM8 with channel agonists stimulates inward calcium currents followed by emptying of cytosolic Ca2+ stores in cancer cells.
Alessandro Alaimo   +18 more
wiley   +1 more source

Adenosine A3 receptor antagonists as anti‐tumor treatment in human prostate cancer: an in vitro study

open access: yesFEBS Open Bio, EarlyView.
The A3 adenosine receptors (A3ARs) are overexpressed in prostate cancer. AR 292 and AR 357, as A3AR antagonists, are capable of blocking proliferation, modulating the expression of drug transporter genes involved in chemoresistance, ferroptosis, and the hypoxia response, and inducing cell death.
Maria Beatrice Morelli   +15 more
wiley   +1 more source

Home - About - Disclaimer - Privacy