Results 171 to 180 of about 3,146,223 (248)
This study reveals that higher shell S coordination can effectively modulate the spin state of FeN4 site via long‐range electronic interactions, giving rise to the oriented generation of singlet oxygen from peroxymonosulfate activation. Abstract Precise manipulation of coordination structure of single‐atom sites and establishment of schematic ...
Liang Zhang+8 more
wiley +1 more source
Achieving Large and Anisotropic Spin‐Mediated Thermal Transport in Textured Quantum Magnets
An advanced solvent‐cast cold pressing method is developed to synthesize highly textured quantum magnets. By aligning spin chains in Ca2CuO3 perpendicular to the pressing direction, a spin‐mediated thermal conductivity of 10 ± 1 W m⁻¹ K⁻¹ is achieved, the highest reported for polycrystalline quantum materials.
Shucheng Guo+6 more
wiley +1 more source
Thermally Induced Gelling Systems Based on Patchy Polymeric Micelles
A novel strategy to design thermally induced gelling systems with tunable material properties is reported. Polymeric mixed‐shell micelles displaying multiple thermosensitive patchy domains formed hydrogels by assembling into well‐entangled worm‐like network structures upon heating to body temperature. The patchy micelle design significantly affects the
Binru Han+9 more
wiley +1 more source
Chemically Processed Porous V2O5 Thin‐Film Cathodes for High‐Performance Thin‐film Zn‐Ion Batteries
This study presents a rapid, cost‐effective chemical method for fabricating porous vanadium oxide thin‐film cathodes, aimed at enhancing charge storage in Zinc‐ion thin‐film batteries. The approach promises high‐performance, safe, and affordable thin‐film batteries, with industrial viability through efficient processing of highly porous cathodes ...
Jingli Luo+9 more
wiley +1 more source
3D Printed Ultra‐Fast Plastic Scintillators Based on Perovskite‐Photocurable Polymer Composite
The demand for radiation detection is increasing in a number of fields, including high‐energy physics, medical imaging, and homeland security. This study serves to demonstrate the potential for the fabrication of fast perovskite‐based scintillators with complex shapes via stereolithographic additive manufacturing, representing a new path toward the ...
Antonella Giuri+16 more
wiley +1 more source
Wearable Haptic Feedback Interfaces for Augmenting Human Touch
The wearable haptic feedback interfaces enhance user experience in gaming, social media, biomedical instrumentation, and robotics by generating tactile sensations. This review discusses and categorizes current haptic feedback interfaces into force, thermal, and electrotactile stimulation‐based haptic feedback interfaces, elucidating their current ...
Shubham Patel+3 more
wiley +1 more source
This work investigates the Nernst effect in the Kagome magnet ErMn6Sn6 which exhibits both topological and anomalous Nernst effects with the anomalous Nernst coefficient reaching 1.71 µV K⁻¹ at 300 K. This value surpasses that of most canted antiferromagnetic materials, making ErMn6Sn6 a promising candidate for advancing thermoelectric devices based on
Olajumoke Oluwatobiloba Emmanuel+2 more
wiley +1 more source
A wideband tunable electrochromic device with dynamic thermal emissivity control is demonstrated. The system enables adaptive heat regulation via electrochemically modulated silver deposition, achieving efficient cooling and heating states. The flexible design ensures mechanical robustness under bending conditions, making it promising for portable and ...
Jiawei Liang+10 more
wiley +1 more source
Hyaluronic acid‐dopamine‐based intra‐crosslinked microsphere including cisplatin (HPC MS) is fabricated by spray‐drying and calcium/iron ions are introduced for interparticle crosslinking. Designed microsphere‐aggregated hydrogel (MAH) system including cisplatin/CaO2/FeSO4 can provide apoptosis/calcicoptosis/ferroptosis‐mediated chemo/cascade ...
ChaeRim Hwang+6 more
wiley +1 more source