Results 191 to 200 of about 6,742,422 (376)

Tunable Synthetic Hydrogel Modulates Hepatic Lineage Specification of Human Liver Organoid

open access: yesAdvanced Functional Materials, EarlyView.
In this study, a synthetic hydrogel is reported that supports the formation of hiPSC‐derived human liver organoids (HLOs). Hepatic lineage specification can be modulated via conjugation of RGD peptide to hydrogel: RGD‐conjugated hydrogels promote cholangiocyte differentiation, whereas RGD‐free hydrogels favor hepatocyte commitment of HLO cells.
Lei Wang   +16 more
wiley   +1 more source

Calcium Imparts Advanced Functionalities to Silk Hydrogels for Biofabrication and Biomedical Innovation

open access: yesAdvanced Functional Materials, EarlyView.
The addition of calcium ions to silk fibroin enhances the hydrogel properties and, when combined with visible light crosslinking, enables compatibility with advanced light‐based fabrication techniques. Calcium ions extend the shelf‐life of silk and facilitate the fabrication of multizonal, multilayered constructs for advanced stimuli‐responsive ...
Hien A. Tran   +11 more
wiley   +1 more source

Visualizing intraorganellar ultrastructures, dynamics, and interactions with open-access background-free Lock-in-SIM. [PDF]

open access: yesNat Commun
Liu W   +17 more
europepmc   +1 more source

Patterning the Void: Combining L‐Systems with Archimedean Tessellations as a Perspective for Tissue Engineering Scaffolds

open access: yesAdvanced Functional Materials, EarlyView.
This study introduces a novel multi‐scale scaffold design using L‐fractals arranged in Archimedean tessellations for tissue regeneration. Despite similar porosity, tiles display vastly different tensile responses (1–100 MPa) and deformation modes. In vitro experiments with hMSCs show geometry‐dependent growth and activity. Over 55 000 tile combinations
Maria Kalogeropoulou   +4 more
wiley   +1 more source

Entering the Strong Coupling Regime in Conventional Organic Solar Cells

open access: yesAdvanced Functional Materials, EarlyView.
Organic solar cells convert light into fossil‐free energy, yet they still cannot compete with their silicon counterparts. Strong exciton‐photon coupling can ameliorate some properties of organic solar cells, but it requires additional mirrors that diminish light absorbance. Here, mirror‐free strong exciton‐photon coupling is implemented in conventional
Nicola Peruffo   +4 more
wiley   +1 more source

Entanglement-enhanced quantum lock-in detection achieving Heisenberg scaling. [PDF]

open access: yesNat Commun
Zhang JW   +11 more
europepmc   +1 more source

Home - About - Disclaimer - Privacy