Results 211 to 220 of about 2,163,570 (278)

Miniature Nanomesh Mechano‐Acoustic Sensor with Wide Linear Dynamic Range, Broad Bandwidth, and Flat Frequency Response

open access: yesAdvanced Functional Materials, EarlyView.
A miniaturized mechano‐acoustic sensor is developed using an electrospun PVDF nanomesh as the diaphragm in a capacitive sensor structure. Unlike conventional nanomesh‐based sensors, it achieves high linear sensitivity, a broad and flat frequency response, and a compact form factor.
Jeng‐Hun Lee   +8 more
wiley   +1 more source

Supraparticles Composed of Graphitic Carbon Nitride Nanoparticles and Silica‐Supported Horseradish Peroxidase as Customizable Hybrid Catalysts for Photo‐Biocatalytic Cascade Reactions in Continuous Flow

open access: yesAdvanced Functional Materials, EarlyView.
Herein presented supraparticles combine the nanoparticulate photocatalyst graphitic carbon nitride with the enzyme horseradish peroxidase, which is immobilized on silica nanoparticles. In an optimized compatibility range, both catalysts operate effectively within the hybrid supraparticles and catalyze a cascade reaction consisting of the photocatalytic
Bettina Herbig   +11 more
wiley   +1 more source

A Bespoke Programmable Interpenetrating Elastomer Network Composite Laryngeal Stent for Expedited Paediatric Laryngotracheal Reconstruction

open access: yesAdvanced Functional Materials, EarlyView.
A programmable interpenetrating double‐network architecture, created via 3D‐TIPS printing and resin infusion, synergistically combines thermoplastic and thermosetting elastomers to balance structural rigidity and surface softness—crucial for paediatric laryngeal stents.
Elizabeth F. Maughan   +14 more
wiley   +1 more source

Framing Obesity: The Role of the Research System in Perpetuating or Challenging Weight Stigma. [PDF]

open access: yesObes Sci Pract
Kite J   +11 more
europepmc   +1 more source

Unleashing the Power of Machine Learning in Nanomedicine Formulation Development

open access: yesAdvanced Functional Materials, EarlyView.
A random forest machine learning model is able to make predictions on nanoparticle attributes of different nanomedicines (i.e. lipid nanoparticles, liposomes, or PLGA nanoparticles) based on microfluidic formulation parameters. Machine learning models are based on a database of nanoparticle formulations, and models are able to generate unique solutions
Thomas L. Moore   +7 more
wiley   +1 more source

The FDA's plan to phase out animal testing. [PDF]

open access: yesTrends Biotechnol
Gerke S, Balamut J, Wagner JK.
europepmc   +1 more source

Home - About - Disclaimer - Privacy