Results 1 to 10 of about 120,979 (218)

The signless Laplacian matrix of hypergraphs [PDF]

open access: goldSpecial Matrices, 2022
In this article, we define signless Laplacian matrix of a hypergraph and obtain structural properties from its eigenvalues. We generalize several known results for graphs, relating the spectrum of this matrix to structural parameters of the hypergraph ...
Cardoso Kauê, Trevisan Vilmar
doaj   +4 more sources

Synchronization under matrix-weighted Laplacian [PDF]

open access: greenAutomatica, 2016
Synchronization in a group of linear time-invariant systems is studied where the coupling between each pair of systems is characterized by a different output matrix.
S. Emre Tuna
core   +5 more sources

Laplacian versus adjacency matrix in quantum walk search [PDF]

open access: greenQuantum Information Processing, 2016
A quantum particle evolving by Schr\"odinger's equation contains, from the kinetic energy of the particle, a term in its Hamiltonian proportional to Laplace's operator.
Thomas G. Wong   +2 more
core   +6 more sources

Some Properties of the Eigenvalues of the Net Laplacian Matrix of a Signed Graph

open access: diamondDiscussiones Mathematicae Graph Theory, 2022
Given a signed graph Ġ, let AĠ and DG˙±D_{\dot G}^ \pm denote its standard adjacency matrix and the diagonal matrix of vertex net-degrees, respectively. The net Laplacian matrix of Ġ is defined to be NG˙=DG˙±-AG˙{N_{\dot G}} = D_{\dot G}^ \pm - {A_{\dot
Stanić Zoran
doaj   +2 more sources

On Laplacian resolvent energy of graphs [PDF]

open access: yesTransactions on Combinatorics, 2023
Let $G$ be a simple connected graph of order $n$ and size $m$. The matrix $L(G)=D(G)-A(G)$ is the Laplacian matrix of $G$, where $D(G)$ and $A(G)$ are the degree diagonal matrix and the adjacency matrix, respectively. For the graph $G$, let $d_{1}\geq d_{
Sandeep Bhatnagar   +2 more
doaj   +1 more source

On singularity and properties of eigenvectors of complex Laplacian matrix of multidigraphs

open access: yesAKCE International Journal of Graphs and Combinatorics, 2023
In this article, we associate a Hermitian matrix to a multidigraph G. We call it the complex Laplacian matrix of G and denote it by [Formula: see text]. It is shown that the complex Laplacian matrix is a generalization of the Laplacian matrix of a graph.
Sasmita Barik   +2 more
doaj   +1 more source

Cospectral constructions for several graph matrices using cousin vertices

open access: yesSpecial Matrices, 2021
Graphs can be associated with a matrix according to some rule and we can find the spectrum of a graph with respect to that matrix. Two graphs are cospectral if they have the same spectrum.
Lorenzen Kate
doaj   +1 more source

Spektrum Laplace pada graf kincir angin berarah (Q_k^3)

open access: yesMajalah Ilmiah Matematika dan Statistika, 2022
Suppose that 0 = µ0 ≤ µ1 ≤ ... ≤ µn-1 are eigen values of a Laplacian matrix graph with n vertices and m(µ0), m(µ1), …, m(µn-1) are the multiplicity of each µ, so the Laplacian spectrum of a graph can be expressed as a matrix 2 × n whose line elements ...
Melly Amaliyanah   +2 more
doaj   +1 more source

The bipartite Laplacian matrix of a nonsingular tree

open access: yesSpecial Matrices, 2023
For a bipartite graph, the complete adjacency matrix is not necessary to display its adjacency information. In 1985, Godsil used a smaller size matrix to represent this, known as the bipartite adjacency matrix.
Bapat Ravindra B.   +2 more
doaj   +1 more source

NEW BOUNDS AND EXTREMAL GRAPHS FOR DISTANCE SIGNLESS LAPLACIAN SPECTRAL RADIUS [PDF]

open access: yesJournal of Algebraic Systems, 2021
The distance signless Laplacian spectral radius of a connected graph $G$ is the largest eigenvalue of the distance signless Laplacian matrix of $G$, defined as $D^{Q}(G)=Tr(G)+D(G)$, where $D(G)$ is the distance matrix of $G$ and $Tr(G)$ is the diagonal ...
A. Alhevaz, M. Baghipur, S. Paul
doaj   +1 more source

Home - About - Disclaimer - Privacy