Results 21 to 30 of about 120,979 (218)
Largest Eigenvalue of the Laplacian Matrix [PDF]
Following an editorial request, this is the second part of the article originally available in arxiv:1405.4880v1, corresponding to Section 6 of that manuscript. Several clarification comments and improvements to the original exposition were added, and the introduction and background materials are new. No new mathematical content was added.
Benjamin Iriarte Giraldo
openalex +3 more sources
Spectral Graph theory has been utilized frequently in the field of Computer Vision and Pattern Recognition to address challenges in the field of Image Segmentation and Image Classification.
Subramaniam Usha +3 more
doaj +1 more source
Learning Laplacian Matrix in Smooth Graph Signal Representations [PDF]
The construction of a meaningful graph plays a crucial role in the success of many graph-based representations and algorithms for handling structured data, especially in the emerging field of graph signal processing. However, a meaningful graph is not always readily available from the data, nor easy to define depending on the application domain.
Xiaowen Dong +3 more
openalex +4 more sources
Computing the Permanent of the Laplacian Matrices of Nonbipartite Graphs
Let G be a graph with Laplacian matrix LG. Denote by per LG the permanent of LG. In this study, we investigate the problem of computing the permanent of the Laplacian matrix of nonbipartite graphs.
Xiaoxue Hu, Grace Kalaso
doaj +1 more source
On graphs with distance Laplacian eigenvalues of multiplicity n−4
Let G be a connected simple graph with n vertices. The distance Laplacian matrix [Formula: see text] is defined as [Formula: see text], where [Formula: see text] is the diagonal matrix of vertex transmissions and [Formula: see text] is the distance ...
Saleem Khan, S. Pirzada, A. Somasundaram
doaj +1 more source
Monophonic Distance Laplacian Energy of Transformation Graphs Sn^++-,Sn^{+-+},Sn^{+++}
Let $G$ be a simple connected graph of order $n$, $v_{i}$ its vertex. Let $\delta^{L}_{1}, \delta^{L}_{2}, \ldots, \delta^{L}_{n}$ be the eigenvalues of the distance Laplacian matrix $D^{L}$ of $G$. The distance Laplacian energy is denoted by $LE_{D}(G)$.
Diana R, Binu Selin T
doaj +1 more source
Chromatic number and signless Laplacian spectral radius of graphs [PDF]
For any simple graph $G$, the signless Laplacian matrix of $G$ is defined as $D(G)+A(G)$, where $D(G)$ and $A(G)$ are the diagonal matrix of vertex degrees and the adjacency matrix of $G$, respectively.
Mohammad Reza Oboudi
doaj +1 more source
Random matrix analysis of network Laplacians [PDF]
We analyze eigenvalues fluctuations of the Laplacian of various networks under the random matrix theory framework. Analyses of random networks, scale-free networks and small-world networks show that nearest neighbor spacing distribution of the Laplacian of these networks follow Gaussian orthogonal ensemble statistics of random matrix theory ...
Jalan, S., Bandyopadhyay, J.
openaire +3 more sources
Sparse Graph Learning Under Laplacian-Related Constraints
We consider the problem of learning a sparse undirected graph underlying a given set of multivariate data. We focus on graph Laplacian-related constraints on the sparse precision matrix that encodes conditional dependence between the random variables ...
Jitendra K. Tugnait
doaj +1 more source
The normalized distance Laplacian
The distance matrix 𝒟(G) of a connected graph G is the matrix containing the pairwise distances between vertices. The transmission of a vertex vi in G is the sum of the distances from vi to all other vertices and T(G) is the diagonal matrix of ...
Reinhart Carolyn
doaj +1 more source

