Results 21 to 30 of about 120,979 (218)

Largest Eigenvalue of the Laplacian Matrix [PDF]

open access: green, 2015
Following an editorial request, this is the second part of the article originally available in arxiv:1405.4880v1, corresponding to Section 6 of that manuscript. Several clarification comments and improvements to the original exposition were added, and the introduction and background materials are new. No new mathematical content was added.
Benjamin Iriarte Giraldo
openalex   +3 more sources

An integrated exploration of heat kernel invariant feature and manifolding technique for 3D object recognition system

open access: yesActa Scientiarum: Technology, 2023
Spectral Graph theory has been utilized frequently in the field of Computer Vision and Pattern Recognition to address challenges in the field of Image Segmentation and Image Classification.
Subramaniam Usha   +3 more
doaj   +1 more source

Learning Laplacian Matrix in Smooth Graph Signal Representations [PDF]

open access: greenIEEE Transactions on Signal Processing, 2014
The construction of a meaningful graph plays a crucial role in the success of many graph-based representations and algorithms for handling structured data, especially in the emerging field of graph signal processing. However, a meaningful graph is not always readily available from the data, nor easy to define depending on the application domain.
Xiaowen Dong   +3 more
openalex   +4 more sources

Computing the Permanent of the Laplacian Matrices of Nonbipartite Graphs

open access: yesJournal of Mathematics, 2021
Let G be a graph with Laplacian matrix LG. Denote by per LG the permanent of LG. In this study, we investigate the problem of computing the permanent of the Laplacian matrix of nonbipartite graphs.
Xiaoxue Hu, Grace Kalaso
doaj   +1 more source

On graphs with distance Laplacian eigenvalues of multiplicity n−4

open access: yesAKCE International Journal of Graphs and Combinatorics, 2023
Let G be a connected simple graph with n vertices. The distance Laplacian matrix [Formula: see text] is defined as [Formula: see text], where [Formula: see text] is the diagonal matrix of vertex transmissions and [Formula: see text] is the distance ...
Saleem Khan, S. Pirzada, A. Somasundaram
doaj   +1 more source

Monophonic Distance Laplacian Energy of Transformation Graphs Sn^++-,Sn^{+-+},Sn^{+++}

open access: yesRatio Mathematica, 2023
Let $G$ be a simple connected graph of order $n$, $v_{i}$ its vertex. Let $\delta^{L}_{1}, \delta^{L}_{2}, \ldots, \delta^{L}_{n}$ be the eigenvalues of the distance Laplacian matrix $D^{L}$ of $G$. The distance Laplacian energy is denoted by $LE_{D}(G)$.
Diana R, Binu Selin T
doaj   +1 more source

Chromatic number and signless Laplacian spectral radius of graphs [PDF]

open access: yesTransactions on Combinatorics, 2022
For any simple graph $G$, the signless Laplacian matrix of $G$ is defined as $D(G)+A(G)$, where $D(G)$ and $A(G)$ are the diagonal matrix of vertex degrees and the adjacency matrix of $G$, respectively.
Mohammad Reza Oboudi
doaj   +1 more source

Random matrix analysis of network Laplacians [PDF]

open access: yesPhysica A: Statistical Mechanics and its Applications, 2008
We analyze eigenvalues fluctuations of the Laplacian of various networks under the random matrix theory framework. Analyses of random networks, scale-free networks and small-world networks show that nearest neighbor spacing distribution of the Laplacian of these networks follow Gaussian orthogonal ensemble statistics of random matrix theory ...
Jalan, S., Bandyopadhyay, J.
openaire   +3 more sources

Sparse Graph Learning Under Laplacian-Related Constraints

open access: yesIEEE Access, 2021
We consider the problem of learning a sparse undirected graph underlying a given set of multivariate data. We focus on graph Laplacian-related constraints on the sparse precision matrix that encodes conditional dependence between the random variables ...
Jitendra K. Tugnait
doaj   +1 more source

The normalized distance Laplacian

open access: yesSpecial Matrices, 2021
The distance matrix 𝒟(G) of a connected graph G is the matrix containing the pairwise distances between vertices. The transmission of a vertex vi in G is the sum of the distances from vi to all other vertices and T(G) is the diagonal matrix of ...
Reinhart Carolyn
doaj   +1 more source

Home - About - Disclaimer - Privacy