Results 21 to 30 of about 121,348 (314)

Cospectral constructions for several graph matrices using cousin vertices

open access: yesSpecial Matrices, 2021
Graphs can be associated with a matrix according to some rule and we can find the spectrum of a graph with respect to that matrix. Two graphs are cospectral if they have the same spectrum.
Lorenzen Kate
doaj   +1 more source

Spektrum Laplace pada graf kincir angin berarah (Q_k^3)

open access: yesMajalah Ilmiah Matematika dan Statistika, 2022
Suppose that 0 = µ0 ≤ µ1 ≤ ... ≤ µn-1 are eigen values of a Laplacian matrix graph with n vertices and m(µ0), m(µ1), …, m(µn-1) are the multiplicity of each µ, so the Laplacian spectrum of a graph can be expressed as a matrix 2 × n whose line elements ...
Melly Amaliyanah   +2 more
doaj   +1 more source

The bipartite Laplacian matrix of a nonsingular tree

open access: yesSpecial Matrices, 2023
For a bipartite graph, the complete adjacency matrix is not necessary to display its adjacency information. In 1985, Godsil used a smaller size matrix to represent this, known as the bipartite adjacency matrix.
Bapat Ravindra B.   +2 more
doaj   +1 more source

NEW BOUNDS AND EXTREMAL GRAPHS FOR DISTANCE SIGNLESS LAPLACIAN SPECTRAL RADIUS [PDF]

open access: yesJournal of Algebraic Systems, 2021
The distance signless Laplacian spectral radius of a connected graph $G$ is the largest eigenvalue of the distance signless Laplacian matrix of $G$, defined as $D^{Q}(G)=Tr(G)+D(G)$, where $D(G)$ is the distance matrix of $G$ and $Tr(G)$ is the diagonal ...
A. Alhevaz, M. Baghipur, S. Paul
doaj   +1 more source

Principal eigenvector of the signless Laplacian matrix [PDF]

open access: yesComputational and Applied Mathematics, 2021
In this paper, we study the entries of the principal eigenvector of the signless Laplacian matrix of a hypergraph. More precisely, we obtain bounds for this entries. These bounds are computed trough other important parameters, such as spectral radius, maximum and minimum degree.
openaire   +2 more sources

The Characterizing Properties of (Signless) Laplacian Permanental Polynomials of Almost Complete Graphs

open access: yesJournal of Mathematics, 2021
Let G be a graph with n vertices, and let LG and QG denote the Laplacian matrix and signless Laplacian matrix, respectively. The Laplacian (respectively, signless Laplacian) permanental polynomial of G is defined as the permanent of the characteristic ...
Tingzeng Wu, Tian Zhou
doaj   +1 more source

An integrated exploration of heat kernel invariant feature and manifolding technique for 3D object recognition system

open access: yesActa Scientiarum: Technology, 2023
Spectral Graph theory has been utilized frequently in the field of Computer Vision and Pattern Recognition to address challenges in the field of Image Segmentation and Image Classification.
Subramaniam Usha   +3 more
doaj   +1 more source

Computing the Permanent of the Laplacian Matrices of Nonbipartite Graphs

open access: yesJournal of Mathematics, 2021
Let G be a graph with Laplacian matrix LG. Denote by per LG the permanent of LG. In this study, we investigate the problem of computing the permanent of the Laplacian matrix of nonbipartite graphs.
Xiaoxue Hu, Grace Kalaso
doaj   +1 more source

On graphs with distance Laplacian eigenvalues of multiplicity n−4

open access: yesAKCE International Journal of Graphs and Combinatorics, 2023
Let G be a connected simple graph with n vertices. The distance Laplacian matrix [Formula: see text] is defined as [Formula: see text], where [Formula: see text] is the diagonal matrix of vertex transmissions and [Formula: see text] is the distance ...
Saleem Khan, S. Pirzada, A. Somasundaram
doaj   +1 more source

Monophonic Distance Laplacian Energy of Transformation Graphs Sn^++-,Sn^{+-+},Sn^{+++}

open access: yesRatio Mathematica, 2023
Let $G$ be a simple connected graph of order $n$, $v_{i}$ its vertex. Let $\delta^{L}_{1}, \delta^{L}_{2}, \ldots, \delta^{L}_{n}$ be the eigenvalues of the distance Laplacian matrix $D^{L}$ of $G$. The distance Laplacian energy is denoted by $LE_{D}(G)$.
Diana R, Binu Selin T
doaj   +1 more source

Home - About - Disclaimer - Privacy