Results 121 to 130 of about 655,925 (317)
Efficiency of radiation friction losses in laser-driven ‘hole boring’ of dense targets
In the interaction of laser pulses of extreme intensity (>10 ^23 Wcm ^−2 ) with high-density, thick plasma targets, simulations show significant radiation friction losses, in contrast to thin targets for which such losses are negligible.
S V Popruzhenko, T V Liseykina, A Macchi
doaj +1 more source
Two‐photon lithography (TPL) enables 3D magnetic nanostructures with unmatched freedom in geometry and material choice. Advances in voxel control, deposition, and functionalization open pathways to artificial spin ices, racetracks, microrobots, and a number of additional technological applications.
Joseph Askey +5 more
wiley +1 more source
Beam profiles of proton and carbon ions in the relativistic transparency regime
Ion acceleration from relativistic laser solid interactions has been of particular interest over the last decade. While beam profiles have been studied for target normal sheath acceleration (TNSA), such profiles have yet to be described for other ...
D Jung +14 more
doaj +1 more source
In this research, it is demonstrated that dual nitrogen and sulfur doping in hollow carbon spheres creates a tunable coordination environment that stabilizes cationic Pd single atoms as robust organometallic complexes, enabling high selectivity and stability for electrochemical hydrogen peroxide production under harsh acidic and peroxide‐rich ...
Guilherme V. Fortunato +16 more
wiley +1 more source
A minimally invasive, transepithelial corneal cross‐linking (TE‐CXL) approach is presented using upconversion nanoparticles (UCNPs)‐loaded contact lenses (UCLs), after topical delivery of hyaluronate–riboflavin conjugates. The NIR‐to‐UV/blue light conversion by UCNPs in a UCL can activate riboflavin for TE‐CXL, resulting in the biomechanical strength ...
Gibum Lee +8 more
wiley +1 more source
Wafer‐Scale Synthesis of Mithrene and its Application in UV Photodetectors
A controlled tarnishing step on the silver surface precedes the solid‐vapor‐phase chemical transformation into silver phenylselenolate thin films. The approach yields crystals exceeding 1 µm with improved in‐plane orientation. Integration on graphene phototransistors demonstrates high photoresponsivity, positioning mithrene as a promising material for ...
Maryam Mohammadi +8 more
wiley +1 more source
The complex physics of the interaction between short-pulse ultrahigh-intensity lasers and solids is so far difficult to access experimentally, and the development of compact laser-based next-generation secondary radiation sources, e.g., for tumor therapy,
Thomas Kluge +26 more
doaj +1 more source
Laser Plasma Interactions in Hohlraums [PDF]
Lasers plasma instabilities are an important constraint in x-ray driven inertial confinement fusion. In hohlraums irradiated with 1.06 {mu}m light on the Shiva laser, plasma instabilities were extremely deleterious, driving the program to the use of shorter wavelength light. Excellent coupling has been achieved in hohlraums driven with 0.35 {mu}m light
openaire +1 more source
A cellular automaton model of laser–plasma interactions
This paper deals with the realization of a CA model of the physical interactions occurring when high-power laser pulses are focused on plasma targets. The low-level and microscopic physical laws of interactions among the plasma and the photons in the pulse are described. In particular, electron–electron interaction via the Coulomb force and photon–
BATANI D. +3 more
openaire +4 more sources
Electrochemical Formation of BiVO4/BiPO4 Photoanodes for Enhanced Selectivity toward H2O2 Generation
In acidic KPi, V dissolves from the BiVO4 lattice, while adsorbed phosphate reacts with the electrode under an external bias, forming a BiPO4 surface layer. This BiPO4 layer exhibits stronger bicarbonate adsorption, redirecting the water oxidation pathway toward two‐electron H2O2 production.
Kaijian Zhu +12 more
wiley +1 more source

