Results 191 to 200 of about 397,717 (356)

Disordered Lattice Glass $ϕ^{4}$ Quantum Field Theory

open access: yes
We study numerically the three-dimensional $ϕ^{4}$ spin glass, a prototypical disordered and discretized Euclidean field theory that manifests inhomogeneities in space and time but considers a homogeneous squared mass and lambda terms. The $ϕ^{4}$ lattice glass field theory is a conceptual generalization of spin glasses to continuous degrees of freedom
openaire   +2 more sources

Synergistic Fluorine and Cyanide Co‐Modification to Reinforce Photoinduced Excitons Formation and Transfer for Efficient CO2 Photoreduction

open access: yesAdvanced Functional Materials, EarlyView.
An advanced F‐doped and ─CN group co‐modified FCCN is developed. Due to the synergistic effects of co‐modification in promoting photogenerated exciton generation, enhancing charge kinetics, expanding active interfacial areas, and optimizing CO2 interfacial reactions, the FCCN photocatalyst demonstrates excellent catalytic performance and high ...
Sheng‐Qi Guo   +9 more
wiley   +1 more source

Quantifying Spin Defect Density in hBN via Raman and Photoluminescence Analysis

open access: yesAdvanced Functional Materials, EarlyView.
An all‐optical method is presented for quantifying the density of boron vacancy spin defects in hexagonal boron nitride (hBN). By correlating Raman and photoluminescence signals with irradiation fluence, defect‐induced Raman modes are identified and established an relationship linking optical signatures to absolute defect densities. This enables direct
Atanu Patra   +8 more
wiley   +1 more source

Wafer‐Scale Synthesis of Mithrene and its Application in UV Photodetectors

open access: yesAdvanced Functional Materials, EarlyView.
A controlled tarnishing step on the silver surface precedes the solid‐vapor‐phase chemical transformation into silver phenylselenolate thin films. The approach yields crystals exceeding 1 µm with improved in‐plane orientation. Integration on graphene phototransistors demonstrates high photoresponsivity, positioning mithrene as a promising material for ...
Maryam Mohammadi   +8 more
wiley   +1 more source

High‐Yield Synthesis of Fe‐NC Electrocatalysts Using Mg2+ Templating and Schiff‐Base Porous Organic Polymers

open access: yesAdvanced Functional Materials, EarlyView.
Fe─NC porous oxygen reduction electrocatalysts are prepared employing a 2,4,6‐Triaminopyrimidine‐based porous organic polymer, a Mg2+ Lewis acid, and a low‐temperature cation exchange protocol. Using the polymer precursor achieves high pyrolysis yields and results in atomically dispersed FeNx sites. The resulting catalysts feature hierarchical porosity
Eliot Petitdemange   +11 more
wiley   +1 more source

Spectrally Tunable 2D Material‐Based Infrared Photodetectors for Intelligent Optoelectronics

open access: yesAdvanced Functional Materials, EarlyView.
Intelligent optoelectronics through spectral engineering of 2D material‐based infrared photodetectors. Abstract The evolution of intelligent optoelectronic systems is driven by artificial intelligence (AI). However, their practical realization hinges on the ability to dynamically capture and process optical signals across a broad infrared (IR) spectrum.
Junheon Ha   +18 more
wiley   +1 more source

Synergistic Compatibilization of CsPbBr3 Perovskites and HfO2 Nanocrystals for Hybrid Sensitized Nanoscintillators

open access: yesAdvanced Functional Materials, EarlyView.
Lead halide perovskite nanocrystals are promising scintillators but suffer from reabsorption losses and limited compatibility with high‐Z additives. Hybridization of CsPbBr3 nanocrystals with PbBr2‐passivated HfO2 nanoparticle sensitizers, achieved during or after synthesis, produces stable composites with maintained optical quality, improved ...
Francesco Bruni   +17 more
wiley   +1 more source

Home - About - Disclaimer - Privacy