Results 201 to 210 of about 1,613,840 (373)

Computational Simulations of Metal–Organic Frameworks to Enhance Adsorption Applications

open access: yesAdvanced Materials, EarlyView.
This review highlights the significance of molecular simulations in expanding the understanding of metal–organic frameworks (MOFs) and improving their gas adsorption applications. The historical development and implementation of molecular simulations in the MOF field are given, high‐throughput computational screening studies used to unlock the ...
Hilal Daglar   +3 more
wiley   +1 more source

Synthetic Control of Water‐Stable Hybrid Perovskitoid Semiconductors

open access: yesAdvanced Materials, EarlyView.
Hybrid metal‐halide perovskites are promising semiconductors for optoelectronics, yet their water stability is problematic. A new synthesis method is developed using lead iodide and cysteamine under various pH conditions, forming stable perovskitoid structures.
Jiyoon Kim   +8 more
wiley   +1 more source

CDT---an Entropic Theory of Quantum Gravity [PDF]

open access: yes, 2010
In these lectures we describe how a theory of quantum gravity may be constructed in terms of a lattice formulation based on so-called causal dynamical triangulations (CDT).
Ambjorn, J.   +3 more
core  

Optoelectronic Devices for In‐Sensor Computing

open access: yesAdvanced Materials, EarlyView.
The raw data obtained directly from sensors in the noisy analogue domain is often unstructured, which lacks a predefined format or organization and does not conform to a specific data model. Optoelectronic devices for in‐sensor visual processing can integrate perception, memory, and processing functions in the same physical units, which can compress ...
Qinqi Ren   +7 more
wiley   +1 more source

The Deepest Blue: Major Advances and Challenges in Deep Blue Emitting Quasi‐2D and Nanocrystalline Perovskite LEDs

open access: yesAdvanced Materials, EarlyView.
In this review, the recent development of deep‐blue (≤465 nm) perovskite light‐emitting diodes (PeLEDs) are summarized, using different perovskite nanomaterials, including nanocrystals (NCs), quantum dots (QDs), nanoplatelets (NPLs), quasi‐2D thin film, 3D bulk thin film, as well as lead‐free perovskite nanomaterials.
Pui Kei Ko   +6 more
wiley   +1 more source

Emerging Opportunities of Colloidal Quantum Dots for Photocatalytic Organic Transformations

open access: yesAdvanced Materials, EarlyView.
Colloidal quantum dots (QDs) have gained significant attention as photocatalysts in organic transformations in recent years. This review highlights QDs’ distinctive features, including the quantum size effect, compositional and structural diversity, tunable surface chemistry, and photophysics.
Qinxuan Cao   +4 more
wiley   +1 more source

Computational Modeling of Reticular Materials: The Past, the Present, and the Future

open access: yesAdvanced Materials, EarlyView.
Reticular materials are advanced materials with applications in emerging technologies. A thorough understanding of material properties at operating conditions is critical to accelerate the deployment at an industrial scale. Herein, the status of computational modeling of reticular materials is reviewed, supplemented with topical examples highlighting ...
Wim Temmerman   +3 more
wiley   +1 more source

Covalent Organic Frameworks for Photocatalysis

open access: yesAdvanced Materials, EarlyView.
This review provides an overview of recent advances in covalent organic frameworks (COFs) for photocatalysis, focusing on sustainable energy applications like water splitting, hydrogen peroxide generation, and CO2 and N2 reduction. It discusses design principles, structure‐function relationships, challenges in COF photocatalysis, and strategies to ...
Bikash Mishra   +6 more
wiley   +1 more source

Adsorption and Separation by Flexible MOFs

open access: yesAdvanced Materials, EarlyView.
Flexible metal–organic frameworks (MOFs) present significant potential for gas storage and separation due to their structural dynamic. This review explores the rationale behind the flexible MOFs' enhanced working capacity and separation factors. It also addresses key challenges, including phase transition kinetics, crystal robustness, cycling, shaping,
Irena Senkovska   +4 more
wiley   +1 more source

Feynman checkers: lattice quantum field theory with real time

open access: yesAnalysis and Mathematical Physics
We present a new completely elementary model that describes the creation, annihilation, and motion of non-interacting electrons and positrons along a line. It is a modification of the model known under the names Feynman checkers or one-dimensional quantum walk. It can be viewed as a six-vertex model with certain complex weights of the vertices.
M. Skopenkov, A. Ustinov
openaire   +2 more sources

Home - About - Disclaimer - Privacy