Results 201 to 210 of about 3,198,958 (332)

Strong‐Magnetic Flexible Composites for Magnetically Responsive Soft Robots

open access: yesAdvanced Robotics Research, EarlyView.
This perspective provides an overview of the performance mechanisms, preparation methods, and applications of strong magnetic flexible composite materials in soft actuators (such as gripping, movement, and sensing), and further explores current opportunities and challenges.
Wenwen Li   +4 more
wiley   +1 more source

TPS5 and TOR signaling components are determinants of <i>Populus balsamifera</i> leaf morphology. [PDF]

open access: yesFront Plant Sci
Champigny MJ   +5 more
europepmc   +1 more source

Numerical Modeling of Photothermal Self‐Excited Composite Oscillators

open access: yesAdvanced Robotics Research, EarlyView.
We present a numerical framework for simulating photothermal self‐excited oscillations. The driving mechanism is elucidated by highlighting the roles of inertia and overshoot, as well as the phase lag between the thermal moment and the oscillation angle, which together construct the feedback loop between the system state and the environmental stimulus.
Zixiao Liu   +6 more
wiley   +1 more source

Structural and Functional Characterization of EXPO‐Derived Extracellular Vesicles in Plants

open access: yesAdvanced Science, EarlyView.
In this study, 3D electron tomography (ET), cryo‐ET, and immunogold transmission electron microscopy (TEM) are employed to characterize plant extracellular vesicles (EVs) under physiological conditions. EVs are classified into three distinct categories according to their size, content, and molecular‐marker profiles. Furthermore, Exo70E2‐positive medium
Jiayang Gao   +12 more
wiley   +1 more source

Hyperelastic Starch Hydrogel Configures Edible and Biodegradable All‐Components for Soft Robots

open access: yesAdvanced Science, EarlyView.
Hyperelastic starch hydrogel is tailored via a phase separation strategy of solvent‐antisolvent co‐modulation. The mechanical performance of starch hydrogel is widely tuned with maximum strains: 194.4–361.4%; maximum tensile stresses: 34–192 kPa; and Young's moduli: 36.0–205.8 kPa. Notably, the hydrogel achieves complete soil degradation within 24 days
Siyu Yao   +7 more
wiley   +1 more source

Top‐Down Fabricated Wood‐Derived Pressure and Strain Sensors: A Review

open access: yesAdvanced Science, EarlyView.
This review focuses on wood‐derived pressure/strain sensors fabricated via top‐down strategies. It analyzes wood's structural composition, examines processing techniques, discusses sensor types and sensing mechanisms, and reviews existing research. The article concludes with future directions for enhancing performance and scalability.
Yi Ren   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy