Results 1 to 10 of about 434,692 (269)

Central extensions of null-filiform and naturally graded filiform non-Lie Leibniz algebras [PDF]

open access: yesJournal of Algebra, 2017
In this paper we describe central extensions of some nilpotent Leibniz algebras. Namely, central extensions of the Leibniz algebra with maximal index of nilpotency are classified.
Jobir Adashev   +2 more
exaly   +3 more sources

The Classical Hom–Leibniz Yang–Baxter Equation and Hom–Leibniz Bialgebras

open access: yesMathematics, 2022
In this paper, we first introduce the notion of Hom–Leibniz bialgebras, which is equivalent to matched pairs of Hom–Leibniz algebras and Manin triples of Hom–Leibniz algebras.
Shuangjian Guo   +2 more
doaj   +1 more source

Leibniz and Kant on God

open access: yesRevista de Estudios Kantianos, 2023
Is Immanuel Kant’s critique of the proofs of God’s existence accurate? In order to answer this question, I analyse Leibniz’ proof in his “Monadology” and I determine the relation between the cosmological and the ontological version of this proof.
Holger Gutschmidt
doaj   +1 more source

On Hom-Leibniz and Hom-Lie-Yamaguti Superalgebras

open access: yesDiscussiones Mathematicae - General Algebra and Applications, 2021
In this paper some characterizations of Hom-Leibniz superalgebras are given and some of their basic properties are found. These properties can be seen as a generalization of corresponding well-known properties of Hom-Leibniz algebras. Considering the Hom-
Attan Sylvain   +2 more
doaj   +1 more source

Description of the automorphism groups of some Leibniz algebras

open access: yesResearches in Mathematics, 2023
Let $L$ be an algebra over a field $F$ with the binary operations $+$ and $[,]$. Then $L$ is called a left Leibniz algebra if it satisfies the left Leibniz identity: $[[a,b],c]=[a,[b,c]]-[b,[a,c]]$ for all elements $a,b,c\in L$.
L.A. Kurdachenko, O.O. Pypka, M.M. Semko
doaj   +1 more source

On the derivations of cyclic Leibniz algebras

open access: yesKarpatsʹkì Matematičnì Publìkacìï, 2022
Let $L$ be an algebra over a field $F$. Then $L$ is called a left Leibniz algebra, if its multiplication operation $[-,-]$ additionally satisfies the so-called left Leibniz identity: $[[a,b],c]=[a,[b,c]]-[b,[a,c]]$ for all elements $a,b,c\in L$. A linear
M.M. Semko, L.V. Skaskiv, O.A. Yarovaya
doaj   +1 more source

Regarding ‘Leibniz Equivalence’ [PDF]

open access: yesFoundations of Physics, 2020
AbstractLeibniz Equivalence is a principle of applied mathematics that is widely assumed in both general relativity textbooks and in the philosophical literature on Einstein’s hole argument. In this article, I clarify an ambiguity in the statement of this Leibniz Equivalence, and argue that the relevant expression of it for the hole argument is ...
openaire   +2 more sources

Leibniz A-algebras [PDF]

open access: yesCommunications in Mathematics, 2020
Abstract A finite-dimensional Lie algebra is called an A-algebra if all of its nilpotent subalgebras are abelian. These arise in the study of constant Yang-Mills potentials and have also been particularly important in relation to the problem of describing residually finite varieties.
openaire   +5 more sources

Leibniz et Heidegger : Principe de raison suffisante et Satz vom Grund. Quelques remarques sur la destruction heideggérienne du Principe De raison (suffisante). Le Fondement (Grund) de 1929 et le Satz vom Grund (1955-56)

open access: yesLexicon Philosophicum, 2021
In the present discussion, I set myself the objective of sketching out Martin Heidegger’s two different approaches to the principle of sufficient reason in Leibniz.
Martin Škára
doaj   +1 more source

APIBENDRINIMAI IŠ DISKUSIJŲ SU FARDELLA

open access: yesProblemos, 2013
Versta iš: Gottfried Wilhelm Leibniz. Sämtliche Schriften und Briefe, Sechste Reihe: Philosophische Schriften. Bd. 4. Berlin: Akademie Verlag, 1999, p. 1666–1674.
Gottfried Wilhelm Leibniz
doaj   +1 more source

Home - About - Disclaimer - Privacy