Results 1 to 10 of about 268,283 (236)

Leonardo Fibonacci and Frederick II: An encounter of Islamic mathematics with Europe

open access: diamondBullettin of the Gioenia Academy of Natural Sciences of Catania
This note describes a very specific moment in history when Islamic mathematics and European culture came in contact with each other. While such contacts took place over several centuries, this note focuses on Leonardo Fibonacci’s experience in North Africa that led him to interact with the scientists at the court of Frederick II, Stupor Mundi.
Daniele C. Struppa
semanticscholar   +4 more sources

On approximation methods of Leonardo Fibonacci

open access: closedHistoria Mathematica, 1976
AbstractAs is well known, Leonardo da Pisa gave a very precise approximation for the only irrational root of the equation x3 + 2x2 + 10x = 20. Two hypotheses concerning his method were put forward in the XIX century. With good reason they were criticized by M. Cantor in his Vorlesungen.
Stanislaw Glushkov
semanticscholar   +4 more sources

Altın Oran (Leonardo Fibonacci) Dikimi ve Mikoriza Uygulamasının Domatesin Verim ve Kalite Özellikleri Üzerine Etkileri

open access: bronzeÇOMÜ Ziraat Fakültesi Dergisi, 2019
Mikoriza’nın domateste beslenme üzerine olan etkileri pek çok kez incelenmişse de, meyve kalitesi üzerine olan etkilerinin belirlenmesi için halen yeni çalışmalara gerek duyulmaktadır. Diğer yandan, altın oran ölçeğine göre yapılan fide dikiminin domateste verim ve kaliteye olası fayda ve zararları konusunda bir çalışmaya rastlanmamıştır.
Mustafa Emre ÖZEREN   +2 more
semanticscholar   +6 more sources

Fibonacci Numbers that Are $$\eta$$-concatenations of Leonardo and Lucas Numbers

open access: diamondProceedings of the Bulgarian Academy of Sciences
Let $$\{F_{r}\}_{r\geq0}$$, $$\{L_{r}\}_{r\geq0}$$ and $$\{Le_{r}\}_{r\geq0}$$ be $$r$$-th terms of Fibonacci, Lucas and Leonardo sequences, respectively. In this paper, we determined the effective bounds for the solutions of the Diophantine equation $$F_{r}=\eta^{k}Le_{s}+L_{t}$$ in non-negative integers $$r$$, $$s$$, $$t$$, where $$k$$ represents the
Taher, Hunar Sherzad, Dash, Saroj Kumar
semanticscholar   +5 more sources

Uma abordagem geométrica para relações entre os números de Fibonacci e Leonardo com o aporte do GeoGebra

open access: diamondRevista do Instituto GeoGebra Internacional de São Paulo
O estudo em torno das sequências numéricas são bem abordadas no âmbito da Matemática Pura, em especial tem a sequência de Fibonacci que provém a partir do problema dos coelhos infinitos e é abordada em diversas áreas. E, também, a partir desta sequência é possível apresentar outras sequências, por exemplo: a sequência de Leonardo, esta sequência possui
Milena Carolina dos Mangueira   +3 more
semanticscholar   +4 more sources

Revisited Leonardo Fibonacci law of Golden Mean as surface-centric approach for form sustainable in design [PDF]

open access: closed2012 IEEE Symposium on Business, Engineering and Industrial Applications, 2012
The Golden Proportion is also known as the Golden Mean, Phi, or Divine Proportion, this law was made famous by Leonardo Fibonacci around 1200 A.D. He noticed that there was an absolute ratio that appears often throughout nature, a sort of design that is universally efficient in living things and pleasing to the human eye.
Abu Ali   +3 more
semanticscholar   +3 more sources

Non-Fisherian generalized Fibonacci numbers [PDF]

open access: yesNotes on Number Theory and Discrete Mathematics
Using biology as inspiration, this paper explores a generalization of the Fibonacci sequence that involves gender biased sexual reproduction. The female, male, and total population numbers along with their associated recurrence relations are considered ...
Thor Martinsen
doaj   +2 more sources

Bivariate Leonardo polynomials and Riordan arrays [PDF]

open access: yesNotes on Number Theory and Discrete Mathematics
In this paper, bivariate Leonardo polynomials are defined, which are closely related to bivariate Fibonacci polynomials. Bivariate Leonardo polynomials are generalizations of the Leonardo polynomials and Leonardo numbers.
Yasemin Alp, E. Gökçen Koçer
doaj   +2 more sources

Tri–Periodic Fibonacci Numbers and Tri–Periodic Leonardo Numbers

open access: green
In this study, we explore the properties of tri-periodic Fibonacci and tri-periodic Leonardo number sequences. Then we derive generating function of these sequences and give Binet's formula for the tri-periodic Fibonacci sequence. Furthermore, we present Cassani's identity associated with tri-periodic Fibonacci sequnce.
Bahadır Yılmaz, Yüksel Soykan
  +5 more sources

Home - About - Disclaimer - Privacy