Results 101 to 110 of about 654,091 (289)

The dimension of well approximable numbers

open access: yesJournal of the London Mathematical Society, Volume 113, Issue 1, January 2026.
Abstract In this survey article, we explore a central theme in Diophantine approximation inspired by a celebrated result of Besicovitch on the Hausdorff dimension of well approximable real numbers. We outline some of the key developments stemming from Besicovitch's result, with a focus on the mass transference principle, ubiquity and Diophantine ...
Victor Beresnevich, Sanju Velani
wiley   +1 more source

Uncertainty principle for the Riemann-Liouville operator

open access: yesCubo, 2011
A Beurling-Hormander theorem's is proved for the Fourier transform connected with the Riemann-Liouville operator. Nextly, Gelfand-Shilov and Cowling-Price type theorems are established.Se demuestra el teorema de Beurling-Hormander por la transformada de ...
Khaled Hleili   +2 more
doaj  

Theta divisors and permutohedra

open access: yesJournal of the London Mathematical Society, Volume 113, Issue 1, January 2026.
Abstract We establish an intriguing relation of the smooth theta divisor Θn$\Theta ^n$ with permutohedron Πn$\Pi ^n$ and the corresponding toric variety XΠn$X_\Pi ^n$. In particular, we show that the generalised Todd genus of the theta divisor Θn$\Theta ^n$ coincides with h$h$‐polynomial of permutohedron Πn$\Pi ^n$ and thus is different from the same ...
V. M. Buchstaber, A. P. Veselov
wiley   +1 more source

On ( p , q ) $(p,q)$ -classical orthogonal polynomials and their characterization theorems

open access: yesAdvances in Difference Equations, 2017
In this paper, we introduce a general ( p , q ) $(p, q)$ -Sturm-Liouville difference equation whose solutions are ( p , q ) $(p, q)$ -analogues of classical orthogonal polynomials leading to Jacobi, Laguerre, and Hermite polynomials as ( p , q ) → ( 1 ...
M Masjed-Jamei   +3 more
doaj   +1 more source

Liouville theorems for III-posed problems

open access: yesJournal of Mathematical Analysis and Applications, 1984
The paper claims to correct an error in a paper of \textit{H. Brézis} and \textit{J. A. Goldstein} [Improp. posed Bound. Value Probl., Conf. Albuquerque 1974, 65-75 (1975; Zbl 0318.35072)], noting that this error was not picked up by the introduction given by Mathematical Reviews (M.R. 57 {\#}16883) or the review in Zentralblatt für Mathematik.
openaire   +2 more sources

On a rigidity property for quadratic gauss sums

open access: yesMathematika, Volume 72, Issue 1, January 2026.
Abstract Let N$N$ be a large prime and let c>1/4$c > 1/4$. We prove that if f$f$ is a ±1$\pm 1$‐valued multiplicative function, such that the exponential sums Sf(a):=∑1⩽n
Alexander P. Mangerel
wiley   +1 more source

One‐level densities in families of Grössencharakters associated to CM elliptic curves

open access: yesMathematika, Volume 72, Issue 1, January 2026.
Abstract We study the low‐lying zeros of a family of L$L$‐functions attached to the complex multiplication elliptic curve Ed:y2=x3−dx$E_d \;:\; y^2 = x^3 - dx$, for each odd and square‐free integer d$d$. Specifically, upon writing the L$L$‐function of Ed$E_d$ as L(s−12,ξd)$L(s-\frac{1}{2}, \xi _d)$ for the appropriate Grössencharakter ξd$\xi _d$ of ...
Chantal David, Lucile Devin, Ezra Waxman
wiley   +1 more source

Wintner-type nonoscillation theorems for conformable linear Sturm-Liouville differential equations [PDF]

open access: yesOpuscula Mathematica
In this study, we addressed the nonoscillation of th Sturm-Liouville differential equation with a differential operator, which corresponds to a proportional-derivative controller. The equation is a conformable linear differential equation. A Wintner-type
Kazuki Ishibashi
doaj   +1 more source

The Novel Numerical Solutions for Time‐Fractional Fishers Equation

open access: yesAdvances in Mathematical Physics, Volume 2026, Issue 1, 2026.
A new method for solving time‐fractional partial differential equations (TFPDEs) is proposed in the paper. It is known as the fractional Kamal transform decomposition method (FKTDM). TFPDEs are approximated using the FKTDM. The FKTDM is particularly effective for solving various types of fractional partial differential equations (FPDEs), including time‐
Aslı Alkan   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy