Results 41 to 50 of about 641,065 (281)
The existence of three solutions for nonlinear operator equations is established via index theory for linear self-adjoint operator equations, critical point reduction method, and three critical points theorems obtained by Brezis-Nirenberg, Ricceri, and ...
Mingliang Song, Shuyuan Mei
doaj +1 more source
The Partial Inverse Spectral and Nodal Problems for Sturm–Liouville Operators on a Star-Shaped Graph
We firstly prove the Horváth-type theorem for Sturm–Liouville operators on a star-shaped graph and then solve a new partial inverse nodal problem for this operator.
Xian-Biao Wei+2 more
doaj +1 more source
A Liouville Theorem for the Euler Equations in the Plane [PDF]
This paper is concerned with qualitative properties of bounded steady flows of an ideal incompressible fluid with no stagnation point in the two-dimensional plane R^2. We show that any such flow is a shear flow, that is, it is parallel to some constant vector.
François Hamel, Nikolai Nadirashvili
openaire +5 more sources
Weighted ${L^p}$-Liouville Theorems for Hypoelliptic Partial Differential Operators on Lie Groups
We prove weighted $L^p$-Liouville theorems for a class of second order hypoelliptic partial differential operators $\mathcal{L}$ on Lie groups $\mathbb{G}$ whose underlying manifold is $n$-dimensional space.
Bonfiglioli, Andrea, Kogoj, Alessia E.
core +1 more source
This paper is concerned with the study of a new class of boundary value problems involving a right Caputo fractional derivative and mixed Riemann-Liouville fractional integral operators, and a nonlocal multipoint version of the closed boundary conditions.
Bashir Ahmad+3 more
doaj +1 more source
Liouville theorems for elliptic systems and applications
We prove different Liouville theorems for several classes of quasilinear elliptic systems and ...
Lorenzo DʼAmbrosio, E. Mitidieri
semanticscholar +6 more sources
Liouville’s theorem for generalized harmonic function [PDF]
In this paper, we give a more physical proof of Liouville's theorem for a class generalized harmonic functions by the method of parabolic equation.
Weihua Wang, Weihua Wang, Qihua Ruan
openaire +3 more sources
Some Liouville Theorems on Finsler Manifolds
We give some Liouville type theorems of L p harmonic (resp. subharmonic, superharmonic) functions on a complete noncompact Finsler manifold.
Minqiu Wang, Songting Yin
doaj +1 more source
Liouville theorems and classification results for a nonlocal Schrödinger equation
In this paper, we study the existence and the nonexistence of positive classical solutions of the static Hartree-Poisson equation \begin{document}$-Δ u = pu^{p-1}(|x|^{2-n}*u^p),\;\; u>0 \;\;in\;\; R^n, $ \end{document} where \begin{document}$n ≥ 3$\end ...
Y. Lei
semanticscholar +1 more source
Nabla Fractional Derivative and Fractional Integral on Time Scales
In this paper, we introduce the nabla fractional derivative and fractional integral on time scales in the Riemann–Liouville sense. We also introduce the nabla fractional derivative in Grünwald–Letnikov sense.
Bikash Gogoi+4 more
doaj +1 more source