Results 41 to 50 of about 654,091 (289)

Fractional isoperimetric Noether's theorem in the Riemann-Liouville sense

open access: yes, 2013
We prove Noether-type theorems for fractional isoperimetric variational problems with Riemann-Liouville derivatives. Both Lagrangian and Hamiltonian formulations are obtained. Illustrative examples, in the fractional context of the calculus of variations,
Almeida   +39 more
core   +1 more source

Some Liouville Theorems on Finsler Manifolds

open access: yesMathematics, 2019
We give some Liouville type theorems of L p harmonic (resp. subharmonic, superharmonic) functions on a complete noncompact Finsler manifold.
Minqiu Wang, Songting Yin
doaj   +1 more source

The Partial Inverse Spectral and Nodal Problems for Sturm–Liouville Operators on a Star-Shaped Graph

open access: yesMathematics, 2022
We firstly prove the Horváth-type theorem for Sturm–Liouville operators on a star-shaped graph and then solve a new partial inverse nodal problem for this operator.
Xian-Biao Wei   +2 more
doaj   +1 more source

Higher-dimensional solutions for a nonuniformly elliptic equation

open access: yes, 2013
We prove $m$-dimensional symmetry results, that we call $m$-Liouville theorems, for stable and monotone solutions of the following nonuniformly elliptic equation \begin{eqnarray*}\label{mainequ} - div(\gamma(\mathbf x') \nabla u(\mathbf x)) =\lambda ...
Fazly, Mostafa
core   +1 more source

Liouville Theorem for Dunkl Polyharmonic Functions [PDF]

open access: yesSymmetry, Integrability and Geometry: Methods and Applications, 2008
Assume that $f$ is Dunkl polyharmonic in $\mathbb{R}^n$ (i.e. $(\Delta_h)^p f=0$ for some integer $p$, where $\Delta_h$ is the Dunkl Laplacian associated to a root system $R$ and to a multiplicity function $\kappa$, defined on $R$ and invariant with respect to the finite Coxeter group).
Ren, G., Liu, L.
openaire   +4 more sources

On a mixed nonlinear boundary value problem with the right Caputo fractional derivative and multipoint closed boundary conditions

open access: yesAIMS Mathematics, 2023
This paper is concerned with the study of a new class of boundary value problems involving a right Caputo fractional derivative and mixed Riemann-Liouville fractional integral operators, and a nonlocal multipoint version of the closed boundary conditions.
Bashir Ahmad   +3 more
doaj   +1 more source

Liouville Theorems for a General Class of Nonlocal Operators [PDF]

open access: yes, 2015
In this paper, we study the equation ℒu=0$\mathcal {L} u=0$ in ℝN$\mathbb {R}^{N}$, where ℒ$\mathcal {L}$ belongs to a general class of nonlocal linear operators which may be anisotropic and nonsymmetric.
M. Fall, T. Weth
semanticscholar   +1 more source

A highly accurate numerical method for solving boundary value problem of generalized Bagley‐Torvik equation

open access: yesMathematical Methods in the Applied Sciences, EarlyView.
A highly accurate numerical method is given for the solution of boundary value problem of generalized Bagley‐Torvik (BgT) equation with Caputo derivative of order 0<β<2$$ 0<\beta <2 $$ by using the collocation‐shooting method (C‐SM). The collocation solution is constructed in the space Sm+1(1)$$ {S}_{m+1}^{(1)} $$ as piecewise polynomials of degree at ...
Suzan Cival Buranay   +2 more
wiley   +1 more source

A proof of Liouville’s theorem [PDF]

open access: yesProceedings of the American Mathematical Society, 1961
1. S. Bochner, Group invariance of Cauchy's formula in several variables, Ann. of Math. vol. 45 (1944) pp. 686-707. 2. E. Heinz, Ein v. Neumannscher Satz iuber beschriinkte Operatoren im Hilbertschen Raum, Nachr. Akad. Wiss. Gottingen. Math.-Phys. Kl. Ila. (1952) pp. 5-6. 3. J.
openaire   +1 more source

Liouville theorems for Dirac-harmonic maps [PDF]

open access: yesJournal of Mathematical Physics, 2007
We prove Liouville theorems for Dirac-harmonic maps from the Euclidean space Rn, the hyperbolic space Hn, and a Riemannian manifold Sn (n⩾3) with the Schwarzschild metric to any Riemannian manifold N.
Chen, Qun, Jost, Jürgen, Wang, Guofang
openaire   +2 more sources

Home - About - Disclaimer - Privacy