Results 61 to 70 of about 641,065 (281)
Fractional isoperimetric Noether's theorem in the Riemann-Liouville sense
We prove Noether-type theorems for fractional isoperimetric variational problems with Riemann-Liouville derivatives. Both Lagrangian and Hamiltonian formulations are obtained. Illustrative examples, in the fractional context of the calculus of variations,
Almeida+39 more
core +1 more source
Liouville theorems for stable solutions of the weighted Lane-Emden system [PDF]
We examine the general weighted Lane-Emden system \begin{align*} -\Delta u = \rho(x)v^p,\quad -\Delta v= \rho(x)u^\theta, \quad u,v>0\quad \mbox{in }\;\mathbb{R}^N \end{align*} where $10$.
Hatem Hajlaoui, A. Harrabi, F. Mtiri
semanticscholar +1 more source
No‐regret and low‐regret control for a weakly coupled abstract hyperbolic system
Abstract This paper explores an optimal control problem of weakly coupled abstract hyperbolic systems with missing initial data. Hyperbolic systems, known for their wave‐like phenomena and complexity, become even more challenging with weak coupling between subsystems.
Meriem Louafi+3 more
wiley +1 more source
Generalizations of the Liouville theorem
AbstractThe purpose of this paper is to generalize the Liouville theorem for functions which are defined on the complete Riemannian manifolds. Then, we apply it to the isometric immersions between complete Riemannian manifolds in order to obtain an estimate for the size of the image of immersions in terms of the supremum of the length of their mean ...
openaire +2 more sources
On qualitative analysis of an ecological dynamics with time delay
Abstract In this paper, we study a fractional‐order predator–prey system with time delay, where the dynamics are logistic with prey population commensurate to the carrying capacity. Mainly, by linearizing the system around the equilibrium point, we first analyze the stability and then prove the existence of Hopf bifurcation.
Canan Celik, Kubra Degerli
wiley +1 more source
The contribution of fractional calculus in the development of different areas of research is well known. This article presents investigations involving fractional calculus in the study of analytic functions. Riemann-Liouville fractional integral is known
Alb Lupaş Alina, Acu Mugur
doaj +1 more source
ABSTRACT We investigate the effects of a minimal measurable length on neutron stars, within the quantum hadrodynamics (QHD‐I) model modified by the Generalized Uncertainty Principle (GUP). Working in a deformed Poisson algebra framework, we incorporate GUP effects via a time‐invariant transformation of the phase space volume, effectively reducing the ...
João Gabriel Galli Gimenez+2 more
wiley +1 more source
Uniqueness and comparison principles for semilinear equations and inequalities in Carnot groups
Variants of the Kato inequality are proved for distributional solutions of semilinear equations and inequalities on Carnot groups. Various applications to uniqueness, comparison of solutions and Liouville theorems are presented.
D’Ambrosio Lorenzo, Mitidieri Enzo
doaj +1 more source
We deal with the following Sturm–Liouville boundary value problem: −Ptx′t′+Btxt=λ∇xVt,x, a.e. t∈0,1x0cos α−P0x′0sin α=0x1cos β−P1x′1sin β=0 Under the subquadratic condition at zero, we obtain the existence of two nontrivial solutions and infinitely ...
Dan Liu, Xuejun Zhang, Mingliang Song
doaj +1 more source
A highly accurate numerical method is given for the solution of boundary value problem of generalized Bagley‐Torvik (BgT) equation with Caputo derivative of order 0<β<2$$ 0<\beta <2 $$ by using the collocation‐shooting method (C‐SM). The collocation solution is constructed in the space Sm+1(1)$$ {S}_{m+1}^{(1)} $$ as piecewise polynomials of degree at ...
Suzan Cival Buranay+2 more
wiley +1 more source