Results 81 to 90 of about 651,324 (288)
The purpose of this paper is to study a generalized Riemann–Liouville fractional differential equation and system with nonlocal boundary conditions. Firstly, some properties of the Green function are presented and then Lyapunov-type inequalities for a ...
Faouzi Haddouchi, Mohammad Esmael Samei
doaj +1 more source
Liouville theorems for stable Lane–Emden systems and biharmonic problems [PDF]
We examine the elliptic system given by 1 for 1 < p ⩽ θ and the fourth order scalar equation 2 where 1 < θ. We prove various Liouville type theorems for positive stable solutions.
C. Cowan
semanticscholar +1 more source
In this paper we explore Liouville's theorem on Riemannian cones as defined below. We also study the Strong Liouville Property, that is, the property of a cone having spaces of harmonic functions of a fixed polynomial growth of finite dimension.
Bravo, John E., Cortissoz, Jean C.
openaire +2 more sources
Curves of best approximation on wonderful varieties
Abstract We give an unconditional proof of the Coba conjecture for wonderful compactifications of adjoint type for semisimple Lie groups of type An$A_n$. We also give a proof of a slightly weaker conjecture for wonderful compactifications of adjoint type for arbitrary Lie groups.
Christopher Manon +2 more
wiley +1 more source
Existence of Solutions for Riemann-Liouville Fractional Boundary Value Problem
By using the method of upper and lower solutions and fixed point theorems, the existence of solutions for a Riemann-Liouville fractional boundary value problem with the nonlinear term depending on fractional derivative of lower order is obtained under ...
Wenzhe Xie, Jing Xiao, Zhiguo Luo
doaj +1 more source
Lp - Liouville theorems for invariant evolution equations
Some Liouville-type theorems in Lebesgue spaces for several classes of evolution equations are presented. The involved operators are left invariant with respect to Lie group composition laws. Results for both solutions and sub-solutions are given.
Alessia E. Kogoj
doaj +1 more source
A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart
We establish the nonexistence of nontrivial ancient solutions to the nonlinear heat equation $u_t=\Delta u+|u|^{p-1}u$ which are smaller in absolute value than the self-similar radial singular steady state, provided that the exponent $p$ is strictly ...
Sourdis, Christos
core
Dimer models and conformal structures
Abstract Dimer models have been the focus of intense research efforts over the last years. Our paper grew out of an effort to develop new methods to study minimizers or the asymptotic height functions of general dimer models and the geometry of their frozen boundaries.
Kari Astala +3 more
wiley +1 more source
Cazenave‐Dickstein‐Weissler‐Type Extension of Fujita'S Problem on Heisenberg Groups
ABSTRACT This paper investigates the Fujita critical exponent for a heat equation with nonlinear memory posed on the Heisenberg groups. A sharp threshold is identified such that, for exponent values less than or equal to this critical value, no global solution exists, regardless of the choice of nonnegative initial data. Conversely, for exponent values
Mokhtar Kirane +3 more
wiley +1 more source
The contribution of fractional calculus in the development of different areas of research is well known. This article presents investigations involving fractional calculus in the study of analytic functions. Riemann-Liouville fractional integral is known
Alb Lupaş Alina, Acu Mugur
doaj +1 more source

