Results 211 to 220 of about 48,981 (245)
Some of the next articles are maybe not open access.

Lipschitz classes and convolution approximation processes

Mathematical Proceedings of the Cambridge Philosophical Society, 1981
For a continuous function f(x) on the reals or on the circle T (continuous and 2π periodic) we say that f(x) belongs to the generalized Lipschitz class, denoted by f ∈ Lip* α, ifwhere and Δhf(x) = f(x + ½h)−f(x−½h). For a convolution approximation process given bywherewe shall investigate equivalence relations between the asymptotic behaviour of (d/dx)
openaire   +2 more sources

Singular Integral Operator Involving Higher Order Lipschitz Classes

Mediterranean Journal of Mathematics, 2017
As in [\textit{R. Abreu-Blaya} et al., Bull. Braz. Math. Soc. (N.S.) 48, No. 2, 253--260 (2017; Zbl 1375.30061)] the poly-analytic Cauchy integral is extended to higher-order Lipschitz classes for simply connected plane domains with smooth boundary. Concentrating on the bi-analytic case the boundary integral with the Bitsadze kernel rather than the ...
Juan Bory-Reyes   +2 more
openaire   +1 more source

Boundary interpolation in weak Lipschitz classes

Journal of Mathematical Sciences, 2009
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
openaire   +2 more sources

Lipschitz classes on finite dimensional groups

Mathematical Proceedings of the Cambridge Philosophical Society, 1969
In this paper G will denote a compact metric Abelian group having finite topological dimension, dim G. The discrete dual group of G will be denoted by Γ. The metric on G will be denoted by d(x, y), or |x-y| since translation-invariance is assumed.
openaire   +2 more sources

Bernstein-type operators, convexity and Lipschitz classes

Approximation Theory and its Applications, 1995
The authors study the monotonicity properties of the sequences of some Bernstein-type operators, relative to convex functions, as well as the preservation properties of Lipschitz classes for these operators. They start from a class of Bernstein-Schnabl type operators and give several illustrations for the operators of Bernstein, Stancu and Cheney ...
DELLA VECCHIA, Biancamaria, I. Rasa
openaire   +3 more sources

Rational approximation to Lipschitz and Zygmund classes

Constructive Approximation, 1992
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Borwein, P. B., Zhou, S. P.
openaire   +2 more sources

Lipschitz classes on 0-dimensional groups

Mathematical Proceedings of the Cambridge Philosophical Society, 1967
1. Let G be a compact metric 0-dimensional Abelian group. Its dual or character group Γ is a discrete countable torsion group. We denote elements of G by x, of Γ by y, the value of the character y at x by (x, y), and the Fourier transform of f by
openaire   +1 more source

Specific properties of Lipschitz class functions

Acta Mathematica Hungarica
The authors find two conditions on an orthonormal system (ONS) in \( L_2(0,1) \) which imply that for arbitrary \( f \in\) Lip 1 and for any \( \varepsilon\in (0,1) \) the series \[\sum_{k=1}^{\infty} C_k^2(f)k^{2(1-\varepsilon)}\] converges (here \( C_k(f) \) are the Fourier coefficients with respect to that ONS).
Kashibadze, A., Tsagareishvili, V.
openaire   +1 more source

Local and global Lipschitz classes

1987
Let h be a modulus of continuity, i.e. u is a concave positive and increasing function. If D is a domain in \({\mathbb{R}}^ n\), then a function \(u: D\to {\mathbb{R}}\) is said to belong to the local Lipschitz class loc Lip\({}_ h(D)\) if there is \(b\in (0,1)\) and M such that \(| u(x)- u(y)| \leq M h(| x-y|)\) for all \(x\in D\) and \(y\in D\) with \
openaire   +1 more source

Strong Approximation and Generalized Lipschitz Classes

1981
Recently several papers (see e.g. [2], [3, [5], [7, [10]) deal with problems of imbedding of classes of functions connected with strong approximation of Fourier series. At such problems the main question is to find conditions implying that a certain class of functions should be imbedded into another one, and one of the classes in question is determined
openaire   +1 more source

Home - About - Disclaimer - Privacy