Results 11 to 20 of about 72,220 (275)

Approximation by bivariate Chlodowsky type Szász–Durrmeyer operators and associated GBS operators on weighted spaces

open access: yesJournal of Inequalities and Applications, 2022
In this article, we consider a bivariate Chlodowsky type Szász–Durrmeyer operators on weighted spaces. We obtain the rate of approximation in connection with the partial and complete modulus of continuity and also for the elements of the Lipschitz type ...
Reşat Aslan, M. Mursaleen
doaj   +1 more source

On the Solution of Equations by Extended Discretization

open access: yesComputation, 2020
The method of discretization is used to solve nonlinear equations involving Banach space valued operators using Lipschitz or Hölder constants. But these constants cannot always be found.
Gus I. Argyros   +4 more
doaj   +1 more source

McShane-Whitney extensions in constructive analysis [PDF]

open access: yesLogical Methods in Computer Science, 2020
Within Bishop-style constructive mathematics we study the classical McShane-Whitney theorem on the extendability of real-valued Lipschitz functions defined on a subset of a metric space.
Iosif Petrakis
doaj   +1 more source

Optimality Conditions, Qualifications and Approximation Method for a Class of Non-Lipschitz Mathematical Programs with Switching Constraints

open access: yesMathematics, 2021
In this paper, we consider a class of mathematical programs with switching constraints (MPSCs) where the objective involves a non-Lipschitz term. Due to the non-Lipschitz continuity of the objective function, the existing constraint qualifications for ...
Jinman Lv, Zhenhua Peng, Zhongping Wan
doaj   +1 more source

On the role of Riesz potentials in Poisson's equation and Sobolev embeddings [PDF]

open access: yes, 2014
In this paper, we study the mapping properties of the classical Riesz potentials acting on $L^p$-spaces. In the supercritical exponent, we obtain new "almost" Lipschitz continuity estimates for these and related potentials (including, for instance, the ...
Garg, Rahul, Spector, Daniel
core   +1 more source

On Lipschitz Continuous Optimal Stopping Boundaries [PDF]

open access: yesSIAM Journal on Control and Optimization, 2019
We obtain a probabilistic proof of the local Lipschitz continuity for the optimal stopping boundary of a class of problems with state space $[0,T]\times\mathbb{R}^d$, $d\ge 1$. To the best of our knowledge this is the only existing proof that relies exclusively upon stochastic calculus, all the other proofs making use of PDE techniques and integral ...
Tiziano De Angelis, Gabriele Stabile
openaire   +5 more sources

Optimal Lipschitz criteria and local estimates for non-uniformly elliptic problems [PDF]

open access: yes, 2018
We report on new techniques and results in the regularity theory of general non-uniformly elliptic variational integrals. By means of a new potential theoretic approach we reproduce, in the non-uniformly elliptic setting, the optimal criteria for ...
Beck, Lisa, Mingione, Giuseppe
core   +2 more sources

Weak observability estimates for 1-D wave equations with rough coefficients [PDF]

open access: yes, 2013
In this paper we prove observability estimates for 1-dimensional wave equations with non-Lipschitz coefficients. For coefficients in the Zygmund class we prove a "classical" observability estimate, which extends the well-known observability results in ...
Fanelli, Francesco, Zuazua, Enrique
core   +4 more sources

Lipschitz Continuity of the Solution Mapping of Symmetric Cone Complementarity Problems

open access: yesAbstract and Applied Analysis, 2012
This paper investigates the Lipschitz continuity of the solution mapping of symmetric cone (linear or nonlinear) complementarity problems (SCLCP or SCCP, resp.) over Euclidean Jordan algebras. We show that if the transformation has uniform Cartesian P-
Xin-He Miao, Jein-Shan Chen
doaj   +1 more source

Smoothness parameter of power of Euclidean norm

open access: yes, 2020
In this paper, we study derivatives of powers of Euclidean norm. We prove their H\"older continuity and establish explicit expressions for the corresponding constants.
Nesterov, Yurii, Rodomanov, Anton
core   +1 more source

Home - About - Disclaimer - Privacy