Results 101 to 110 of about 44,638 (313)

Boosting Polysulfide Conversion on Fe‐Doped Nickel Diselenide Toward Robust Lithium–Sulfur Batteries

open access: yesAdvanced Functional Materials, EarlyView.
This work reports an advanced functional material based on Fe‐doped nickel diselenides toward robust lithium–sulfur batteries, demonstrating that Fe‐rich cores and surface doping enhance the density of states at the Fermi level and introduce unpaired electrons for the improvement of the LiPS adsorption and catalytic conversion. Abstract Sulfur offers a
Junshan Li   +11 more
wiley   +1 more source

Single Atom‐Particle Tandem Catalysis Enables Enhanced Desolvation Kinetics for Low‐Temperature Li‐S Batteries

open access: yesAdvanced Functional Materials, EarlyView.
In this work, the tandem catalyst consisted of single Fe atom and Fe3C nanoparticles on porous carbon sheet is initially proposed and developed to facilitate the dissociation of Li(solvent)x+ to release more isolated Li+ to participate in the subsequent polysulfide redox conversions by decreasing the related barriers, contributing to fast kinetics of ...
Yuhang Lin   +12 more
wiley   +1 more source

Lithium, Sodium, and Copper(I) Supersilylphosphanediides M2PSitBu3: Compounds with Novel Spherical (M2P)n Frameworks [PDF]

open access: bronze, 2000
Nils Wibeŕg   +5 more
openalex   +1 more source

Breaking the Capacity Limit for WO3 Anode‐Based Li‐Ion Batteries Using Photo‐Assisted Charging

open access: yesAdvanced Functional Materials, EarlyView.
This image illustrates a photo‐assisted rechargeable lithium‐ion battery. (a) shows the battery structure, where light enhances electron‐hole generation in the anode, boosting ion flow. (b) compares discharging performance, revealing over 60% higher capacity under light compared to dark conditions, showcasing the benefit of light‐assisted energy ...
Rabia Khatoon   +7 more
wiley   +1 more source

Crossover Effects of Transition‐Metal Ions on Lithium‐Metal Anode in Localized High Concentration Electrolytes

open access: yesAdvanced Functional Materials, EarlyView.
This study highlights the impact of transition‐metal (TM) ions (Ni2⁺, Mn2⁺, Co2⁺) on the performance of lithium‐metal anode in localized high‐concentration electrolytes. Mn2⁺ and Co2⁺ destabilize SEI and CEI layers, causing capacity fade and overpotential, while Ni2⁺ shows minimal effects. These findings underscore the need for electrolyte optimization
Zezhou Guo   +2 more
wiley   +1 more source

Mg2+/Al3+ Co‐doped Li‐Rich Manganese‐Based Oxides for Boosting Rate Performance and Stability of Lithium‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
The co‐doping strategy can effectively address the challenges associated with LRMOs cathode materials, providing a promising pathway for the development of high energy density and resilient cathode materials in the next‐generation lithium‐ion batteries. Abstract Lithium‐rich manganese‐based oxides (LRMOs) are promising cathode materials for lithium‐ion
Junxia Meng   +11 more
wiley   +1 more source

Superionic Disulfonic Acid Polymers

open access: yesAdvanced Functional Materials, EarlyView.
A strategy is presented to enhance the mechanical and ion transport properties of acid‐functionalized polymers through controlled polymerizations of precisely designed disulfonic acid monomers with well‐defined functional group arrangements. This approach allows for fine control over molecular interactions, and unexpected hydrophobic characteristics ...
Xuelang Gao   +5 more
wiley   +1 more source

Tunable Thermoshrinkable Hydrogels for 4D Fabrication of Cell‐Seeded Channels

open access: yesAdvanced Functional Materials, EarlyView.
A thermoresponsive polymer with methacrylate groups for photo‐cross‐linking, based on polyethylene glycol, N‐isopropylacrylamide, and 2‐hydroxyethyl acrylate is synthetized to yield hydrogels that shrink upon temperature increase. The new polymer enables the fabrication of cell‐laden perfusable channels with diameters below 200 µm by combining ...
Greta Di Marco   +12 more
wiley   +1 more source

Home - About - Disclaimer - Privacy