Results 271 to 280 of about 625,251 (324)
Some of the next articles are maybe not open access.

On Square Pseudo-Lucas Numbers

Canadian Mathematical Bulletin, 1978
J. H. E. Cohn (1) has shown thatare the only square Fibonacci numbers in the set of Fibonacci numbers defined byIf n is a positive integer, we shall call the numbers defined by(1)pseudo-Lucas numbers.
openaire   +1 more source

Perfect fibonacci and lucas numbers

Rendiconti del Circolo Matematico di Palermo, 2000
Using elementary means, the author shows that no Fibonacci or Lucas number is perfect.
openaire   +2 more sources

Fibonacci and Lucas Numbers

1997
Consider the following number trick–try it out on your friends. You ask them to write down the numbers from 0 to 9. Against 0 and 1 they write any two numbers (we suggest two fairly small positive integers just to avoid tedious arithmetic, but all participants should write the same pair of numbers).
Peter Hilton   +2 more
openaire   +1 more source

Coding theory on Lucas p numbers

Discrete Mathematics, Algorithms and Applications, 2016
In [K. Kuhapatanakul, The Lucas [Formula: see text]-matrix, Internat. J. Math. Ed. Sci. Tech. (2015), http://dx.doi.org/10.1080/0020739X.2015.1026612], Kuhapatanakul introduced Lucas [Formula: see text] matrix, [Formula: see text] whose elements are Lucas [Formula: see text] numbers. In this paper, we developed a new coding and decoding method followed
openaire   +2 more sources

Trisection method by k-Lucas numbers

Applied Mathematics and Computation, 2008
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
openaire   +3 more sources

On Triangular Lucas Numbers

1991
In the paper [3], we have proved that the only triangular numbers (i.e., the positive integers of the form \( \frac{1}{2}m \)(m+1)) in the Fibonacci sequence $$ {u_n} + 2 = {u_{n + 1}} + {u_{{n^,}}}{u_0} = 0, {u_1} = 1 $$ are u ±1=u2=1, u4=3, u8=21 and u10=55. This verifies a conjecture of Vern Hoggatt [2].
openaire   +1 more source

Mersenne Numbers in Generalized Lucas Sequences

Proceedings of the Bulgarian Academy of Sciences
Let $$k \geq 2$$ be an integer and let $$(L_{n}^{(k)})_{n \geq 2-k}$$ be the $$k$$-generalized Lucas sequence with certain initial $$k$$ terms and each term afterward is the sum of the $$k$$ preceding terms. Mersenne numbers are the numbers of the form $$2^a-1$$, where $$a$$ is any positive integer.
Altassan, Alaa, ALAN, Murat
openaire   +2 more sources

Incomplete Fibonacci and Lucas numbers

Rendiconti del Circolo Matematico di Palermo, 1996
It is well known that the Fibonacci numbers \(F_n\) and the Lucas numbers \(L_n\) can be written as \[ \begin{aligned} F_n &= \sum^k_{i=0} {{n-1-i} \choose i}, \qquad \lfloor (n- 1)/2 \rfloor\leq k\leq n-1, \tag{1}\\ L_n &= \sum^k_{i=0} {n\over {n-i}} {{n-i} \choose i}, \qquad \lfloor n/2 \rfloor \leq k\leq n-1.
openaire   +2 more sources

Lucas' number is finally up

Journal of Philosophical Logic, 1982
Discussion de l'argumentation de J. R. Lucas suivant laquelle les etres humains ne peuvent etre des machines ("Minds, Machines and Godel", Philosophy, 36, 1961, p. 120-124). L'A. montre que l'argument de Lucas suivant lequel il n'est pas une machine repose sur une premisse erronee: suivant l'A., Lucas est donc lui-meme une machine.
openaire   +1 more source

Lucas-Sierpiński and Lucas-Riesel Numbers

The Fibonacci Quarterly, 2011
Daniel Baczkowski   +2 more
openaire   +1 more source

Home - About - Disclaimer - Privacy