Results 291 to 300 of about 10,192,155 (339)
Some of the next articles are maybe not open access.
On Lucas's Test for the Primality of Mersenne's Numbers
Journal of the London Mathematical Society, 1935Beweis des Satzes: Ist \(p\) eine Primzahl \((\neq 2)\), so ist \(N = 2^p - 1\) dann und nur dann eine Primzahl, wenn das \((n - 1)\)-te Glied der Reihe \(S_1 = 4, \ldots, S_k= S_{k-1}^2 - 1\) teilbar ist durch \(N\). Ein Teil dieses Satzes ist von Lucas; sein Beweis war nicht einwandfrei. Verf. gebraucht die Reihe \(U_r =\frac{(a^r - b^r)}{(a - b)}\),
openaire +3 more sources
Balancing and Lucas-balancing numbers which are concatenation of three repdigits
Boletín de la Sociedad Matematica Mexicana, 2023S. G. Rayaguru, Jhon J. Bravo
semanticscholar +1 more source
SOME PROPERTIES OF THE PRODUCT OF (P,Q) – FIBONACCI AND (P,Q) - LUCAS NUMBER
, 2017A. Suvarnamani
semanticscholar +1 more source
On Concatenations of Fibonacci and Lucas Numbers
Bulletin of the Iranian Mathematical Society, 2022M. Alan
semanticscholar +1 more source
Lucas's Tests for Mersenne Numbers
The American Mathematical Monthly, 1945(1945). Lucas's Tests for Mersenne Numbers. The American Mathematical Monthly: Vol. 52, No. 4, pp. 188-190.
openaire +2 more sources
Cancer treatment and survivorship statistics, 2022
Ca-A Cancer Journal for Clinicians, 2022Kimberly D Miller +2 more
exaly
Primitive Divisors of Lucas Numbers
1988Let \( R = \{ {R_n}\} _{n = 1}^\infty \) be a Lucas sequence defined by fixed rational integers A and B and by the recursion relation $$ {R_n} = A \cdot {R_{n - 1}} + B \cdot {R_{n - 2}} $$ for n > 2, where the initial values are R1 = 1 and R2 = A. The terms of R are called Lucas numbers.
openaire +2 more sources
Cancer statistics in China, 2015
Ca-A Cancer Journal for Clinicians, 2016Rongshou Zheng +2 more
exaly

