Results 291 to 300 of about 10,192,155 (339)
Some of the next articles are maybe not open access.

On Lucas's Test for the Primality of Mersenne's Numbers

Journal of the London Mathematical Society, 1935
Beweis des Satzes: Ist \(p\) eine Primzahl \((\neq 2)\), so ist \(N = 2^p - 1\) dann und nur dann eine Primzahl, wenn das \((n - 1)\)-te Glied der Reihe \(S_1 = 4, \ldots, S_k= S_{k-1}^2 - 1\) teilbar ist durch \(N\). Ein Teil dieses Satzes ist von Lucas; sein Beweis war nicht einwandfrei. Verf. gebraucht die Reihe \(U_r =\frac{(a^r - b^r)}{(a - b)}\),
openaire   +3 more sources

Balancing and Lucas-balancing numbers which are concatenation of three repdigits

Boletín de la Sociedad Matematica Mexicana, 2023
S. G. Rayaguru, Jhon J. Bravo
semanticscholar   +1 more source

Lucas' number is finally up

Journal of Philosophical Logic, 1982
G. Bowie
semanticscholar   +1 more source

On Concatenations of Fibonacci and Lucas Numbers

Bulletin of the Iranian Mathematical Society, 2022
M. Alan
semanticscholar   +1 more source

Lucas's Tests for Mersenne Numbers

The American Mathematical Monthly, 1945
(1945). Lucas's Tests for Mersenne Numbers. The American Mathematical Monthly: Vol. 52, No. 4, pp. 188-190.
openaire   +2 more sources

Cancer treatment and survivorship statistics, 2022

Ca-A Cancer Journal for Clinicians, 2022
Kimberly D Miller   +2 more
exaly  

Primitive Divisors of Lucas Numbers

1988
Let \( R = \{ {R_n}\} _{n = 1}^\infty \) be a Lucas sequence defined by fixed rational integers A and B and by the recursion relation $$ {R_n} = A \cdot {R_{n - 1}} + B \cdot {R_{n - 2}} $$ for n > 2, where the initial values are R1 = 1 and R2 = A. The terms of R are called Lucas numbers.
openaire   +2 more sources

Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States

Ca-A Cancer Journal for Clinicians, 2018
Farhad Islami   +2 more
exaly  

Cancer statistics in China, 2015

Ca-A Cancer Journal for Clinicians, 2016
Rongshou Zheng   +2 more
exaly  

Home - About - Disclaimer - Privacy