Results 1 to 10 of about 514,877 (379)
Precision luminosity measurements at LHCb [PDF]
Journal of Instrumentation, 2014 Measuring cross-sections at the LHC requires the luminosity to be determined accurately at each centre-of-mass energy √s. In this paper results are reported from the luminosity calibrations carried out at the LHC interaction point 8 with the LHCb ...Aaij, R, Affolder, A, Akiba, K, Alexander, M., Ali, S, Appleby, R B, Artuso, M, Bay, A, Beddow, J, Behrendt, O, Benton, J, Beuzekom, M van, Bjørnstad, P M, Bogdanova, G, Borghi, S, Borgia, A, Bowcock, T J V, Brand, J van den, Brown, H, Buytaert, J, Callot, O, Capua, S De, Carroll, J, Casse, G, Collins, P, Coutinho, R Silva, Dean, C.-T., Doets, M, Donleavy, S, Dossett, D, Dumps, R, Eckstein, D, Eklund, L., Farinelli, C, Farry, S, Ferro-Luzzi, M, Frei, R, Garofoli, J, Gersabeck, M, Gershon, T, Gong, A, Gong, H, Gordon, H, Haefeli, G, Harrison, J, Heijne, V, Hennessy, K, Hulsbergen, W, Huse, T, Hutchcroft, D, Hynds, D, Jaeger, A, Jalocha, P, Jans, E, John, M, Karodia, S, Keaveney, J, Ketel, T, Korolev, M, Kraan, M, Lafferty, G, Latham, T, Laštovička, T, Lefeuvre, G, Leflat, A, Liles, M, Longstaff, I, Lysebetten, A van, MacGregor, G, Marinho, F, McNulty, R, Merkin, M, Moran, D, Mountain, R, Mous, I, Mylroie-Smith, J, Needham, M, Nikitin, N, Noor, A, Oblakowska-Mucha, A, Ogilvy, S, Papadelis, A, Pappagallo, M., Parkes, C, Patel, G D, Rakotomiaramanana, B, Redford, S, Reid, M, Rinnert, K, Rodrigues, E, Saavedra, A F, Schiller, M, Schneider, O, Shears, T, Smith, N A, Soler, F.J.P., Spradlin, P, Szumlak, T, Thomas, C, Tilburg, J van, Tobin, M, Velthuis, J, Verlaat, B, Viret, S, Volkov, V, Wallace, C, Wang, J, Webber, A, Whitehead, M, Zverev, E +109 morecore +25 more sourcesGamma-ray Burst Luminosity Relations: Two-dimensional versus
Three-dimensional Correlations [PDF]
Astrophys.J.705:L15-L19, 2009, 2009 The large scatters of luminosity relations of gamma-ray bursts (GRBs) have
been one of the most important reasons that prevent the extensive applications
of GRBs in cosmology. In this paper, we extend the two-dimensional (2D)
luminosity relations with $\tau_{\mathrm{lag}}$, $V$, $E_{\mathrm{peak}}$, and
$\tau_{\mathrm{RT}}$ as the luminosity indicators Bo Yu, Cardone, Collazzi, D'Agostini, Dai, Fenimore, Ghirlanda, Ghirlanda, Ghirlanda, Li, Liang, Norris, Reichart, Salvaterra, Schaefer, Schaefer, Schaefer, Shi Qi, Tan Lu, Tanvir +19 morearxiv +3 more sourcesThe Empirical Mass-Luminosity Relation for Low Mass Stars [PDF]
Astrophys.SpaceSci.314:51-58,2008, 2007 This work is devoted to improving empirical mass-luminosity relations and
mass-metallicity-luminosity relation for low mass stars. For these stars,
observational data in the mass-luminosity plane or the
mass-metallicity-luminosity space subject to non-negligible errors in all
coordinates with different dimensions.A. Alonso, A. Gould, A.S. Grossman, B. Cester, D. Pourbaix, D. Pourbaix, D. Pourbaix, E. Hertzsprung, F. D’Antona, Fang Xia, G. Laughlin, H. Copeland, H.N. Russell, I.N. Reid, J. Woitas, J. Woitas, J.M. Scalo, L.B. Lucy, O. Demircan, P.R. Bevington, S. Söderhjelm, Shulin Ren, T.J. Henry, T.J. Henry, V.M. Woolf, W.H. Press, X. Bonfils, X. Delfosse, Yanning Fu +28 morearxiv +4 more sourcesSupermassive Black Holes in the Hierarchical Universe: A General
Framework and Observational Tests [PDF]
Astrophys.J.704:89-108,2009, 2009 (Abridged) We present a simple framework for the growth and evolution of
supermassive black holes (SMBHs) in the hierarchical structure formation
paradigm. In our model, black hole accretion is triggered during major mergers
(mass ratio>~0.3) between host dark matter halos. The successive evolution of
quasar luminosities follows a universal light curve Adelberger, Bahcall, Barger, Begelman, Bell, Bennert, Binney, Bryan, Canalizo, Cole, Courteau, Eisenstein, Fan, Fan, Ferrarese, Ferrarese, Francke, Gao, Gebhardt, Graham, Graham, Graham, Granato, Greene, Haiman, Haiman, Heckman, Hennawi, Hennawi, Ho, Hopkins, Hopkins, Hopkins, Hopkins, Hopkins, Jiang, Jiang, Jiang, King, Kollmeier, Kormendy, Lacey, Lapi, Lauer, Lidz, Magorrian, Marconi, Martini, Mo, Myers, Myers, Myers, Myers, Navarro, Richards, Richstone, Ross, Schneider, Serber, Shankar, Shankar, Shaver, Shen, Shen, Shen, Shen, Silk, Silverman, Small, Soltan, Steffen, Stewart, Strand, Thacker, Tinker, Tremaine, Tundo, Ueda, Volonteri, Warren, Wechsler, Wetzel, White, Woo, Wyithe, Wyithe, York, Yu, Yu, Yue Shen, Zel'dovich, Zhang +91 morearxiv +3 more sourcesThe Galaxy Luminosity Function and Luminosity Density at Redshift z=0.1 [PDF]
, 2002 Using a catalog of 147,986 galaxy redshifts and fluxes from the Sloan Digital Sky Survey (SDSS), we measure the galaxy luminosity density at z = 0.1 in five optical bandpasses corresponding to the SDSS bandpasses shifted to match their rest-frame shape ...Andrew J. Connolly, Avery Meiksin, David H. Weinberg, David W. Hogg, Donald P. Schneider, Efstathiou G., Istvan Csabai, J. Brinkmann, Jeffrey A. Munn, Jon Loveday, Kazuhiro Shimasaku, Maddox S. J., Malcolm Britton, Masataka Fukugita, Max Tegmark, Metcalfe N., Michael A. Strauss, Michael R. Blanton, Michael S. Vogeley, Neta A. Bahcall, R. C. Nichol, Sadanori Okamura, Thomas Quinn +22 morecore +4 more sourcesDust covering factor, silicate emission and star formation in luminous
QSOs [PDF]
, 2007 We present Spitzer IRS low resolution, mid-IR spectra of a sample of 25 high
luminosity QSOs at 2
Akylas, Armus, Barger, Baskin, Beelen, Bertoldi, Bressan, Buchanan, Cappi, D. Lutz, Dietrich, Dong, Dwelly, E. Oliva, E. Sturm, Efstathiou, Engels, Evans, Fritz, Förster Schreiber, Gilli, Guainazzi, H. Netzer, Haas, Haas, Hao, Hao, Hasinger, Ho, Ho, Ho, Ho, Hopkins, Houck, Jiang, Kaspi, Kennicutt, Kuhn, La Franca, Lamastra, Laor, Laor, Lawrence, Lutz, M. Imanishi, Maiolino, Maiolino, Maiolino, Malkan, Marconi, Marziani, McLure, Netzer, Netzer, O. Shemmer, Omont, Peeters, Pellegrini, Peng, Peterson, Peterson, Pier, Priddey, R. Maiolino, Richards, Risaliti, Schweitzer, Scott, Scoville, Shang, Shemmer, Shi, Siebenmorgen, Silva, Simpson, Soifer, Spergel, Spoon, Steffen, Steffen, Sturm, Sturm, Sturm, Sturm, Suganuma, Teplitz, Terashima, Tozzi, Treister, Ueda, Vanden Berk, Vignali, Wanders, Wang, Weedman +94 more
arxiv +4 more sources
The Forward Physics Facility at the High-Luminosity LHC [PDF]
Journal of Physics G: Nuclear and Particle Physics, 2022
High energy collisions at the High-Luminosity Large Hadron Collider (LHC) produce a large number of particles along the beam collision axis, outside of the acceptance of existing LHC experiments.Jonathan L. Feng, F. Kling, M. Reno, J. Rojo, D. Soldin, L. Anchordoqui, J. Boyd, A. Ismail, L. Harland–Lang, K. Kelly, V. Pandey, S. Trojanowski, Yu-Dai Tsai, J. Alameddine, T. Araki, A. Ariga, T. Ariga, K. Asai, A. Bacchetta, K. Balazs, A. Barr, M. Battistin, Jianming Bian, C. Bertone, Weidong Bai, P. Bakhti, A. Balantekin, Basabendu Barman, B. Batell, M. Bauer, B. Bauer, M. Becker, A. Berlin, E. Bertuzzo, A. Bhattacharya, M. Bonvini, S. Boogert, A. Boyarsky, J. Bramante, V. Brdar, A. Carmona, D. Casper, F. Celiberto, F. Cerutti, G. Chachamis, Garv Chauhan, M. Citron, Emanuele Copello, J. Corso, Luc Darm'e, R. D’Agnolo, N. Darvishi, A. Das, G. Lellis, A. Roeck, J. D. Vries, H. Dembinski, S. Demidov, P. deNiverville, P. Denton, F. Deppisch, P. Dev, A. Crescenzo, K. Dienes, M. Diwan, H. Dreiner, Yongxu Du, B. Dutta, P. Duwentaster, L. Elie, S. Ellis, R. Enberg, Y. Farzan, M. Fieg, Ana Luisa Foguel, P. Foldenauer, S. Foroughi-Abari, J. Fortin, A. Friedland, Elina Fuchs, Michael Fucilla, K. Gallmeister, Alfonso Garcia, C. Canal, M. Garzelli, R. Gauld, Sumit Ghosh, A. Ghoshal, S. Gibson, F. Giuli, V. Gonccalves, D. Gorbunov, S. Goswami, S. Grau, Julian Y. Gunther, M. Guzzi, Andrew Haas, T. Hakulinen, S. Harris, J. Harz, J. Herrera, Christopher S. Hill, M. Hirsch, T. Hobbs, S. Hoche, A. Hryczuk, F. Huang, T. Inada, A. Infantino, Ameen Ismail, R. Jacobsson, S. Jana, Y. S. Jeong, T. Jevzo, Yongsoo Jho, Krzysztof Jodłowski, Dmitry Kalashnikov, Timo J. Karkkainen, C. Keppel, Jongkuk Kim, M. Klasen, S. Klein, P. Ko, Dominik Kohler, M. Komatsu, K. Kovavr'ik, S. Kulkarni, J. Kumar, Karan Kumar, Jui-Lin Kuo, F. Krauss, A. Kusina, M. Laletin, Chiara Le Roux, Seung J. Lee, Hye-Sung Lee, H. Lefebvre, Jinmian Li, Shuailong Li, Yichen Li, Wei Liu, Zhen Liu, Mickael Lonjon, K. Lyu, R. Maciuła, R. Abraham, M. Masouminia, J. Mcfayden, O. Mikulenko, M. M. Mohammed, K. Mohan, J. Morf'in, U. Mosel, Martin Mosny, K. Muzakka, P. Nadolsky, T. Nakano, S. Nangia, A. Cornago, L. Nevay, P. Ninin, E. Nocera, Takaaki Nomura, R. Nunes, N. Okada, F. Olness, J. Osborne, H. Otono, M. Ovchynnikov, A. Papa, Junle Pei, G. Peon, G. Perez, L. Pickering, S. Platzer, R. Plestid, Tanmay Kumar Poddar, Mudit Rai, M. Rajaee, D. Raut, P. Reimitz, F. Resnati, W. Rhode, P. Richardson, A. Ritz, H. Rokujo, L. Roszkowski, T. Ruhe, R. Ruiz, M. Sabate-Gilarte, A. Sandrock, I. Sarcevic, S. Sarkar, O. Sato, C. Scherb, I. Schienbein, Holger Schulz, P. Schwaller, S. Sciutto, D. Sengupta, L. Shchutska, T. Shimomura, Federico Silvetti, K. Sinha, T. Sjostrand, J. Sobczyk, Huayang Song, J. F. Soriano, Y. Soreq, A. Staśto, D. Stuart, S. Su, W. Su, A. Szczurek, Z. Tabrizi, Y. Takubo, M. Taoso, B. Thomas, P. Thonet, Douglas Tuckler, A. Vera, H. Vincke, K. N. Vishnudath, Zeren Simon Wang, M. Winkler, Wenjie Wu, K. Xie, Xun-Jie Xu, T. You, Ji-Young Yu, Jiang-Hao Yu, K. Zapp, Yongchao Zhang, Yueqian Zhang, Guanghui Zhou, R. Funchal +235 moresemanticscholar +1 more sourceDesign Concept for a Future Super Proton-Proton Collider
Frontiers in Physics, 2022 Following the discovery of the Higgs boson at the LHC in 2012, new large colliders are being considered and studied by the international high-energy community to explore the Higgs boson in details and to probe new physics beyond the Standard Model.Jingyu Tang, Jingyu Tangdoaj +1 more source