Results 261 to 270 of about 1,682,964 (357)

Therapeutic Prospects of αv Integrins Inhibition in Fibrotic Lung Diseases and Carcinogenesis. [PDF]

open access: yesInt J Mol Sci
Golovina EL   +9 more
europepmc   +1 more source

Machine Learning‐Enabled Polymer Discovery for Enhanced Pulmonary siRNA Delivery

open access: yesAdvanced Functional Materials, EarlyView.
This study provides an efficient approach to train a machine learning model by merging heterogeneous literature data to predict suitable polymers for siRNA delivery. Without the need for extensive laboratory synthesis, the machine learning enabled a virtual screening and successfully predicted a polymer that is validated for effective gene silencing in
Felix Sieber‐Schäfer   +10 more
wiley   +1 more source

Intravenous Immunoglobulin in Acute Exacerbations of Fibrotic Interstitial Lung Diseases: A Retrospective, Real-World Study. [PDF]

open access: yesMedicina (Kaunas)
Sotiropoulou V   +11 more
europepmc   +1 more source

Adalimumab‐Poloxamer Conjugate for Bio‐Better: Enhanced Stability and Function

open access: yesAdvanced Functional Materials, EarlyView.
Antibody‐polymer conjugates, particularly poloxamer conjugates, enhance antibody stability by improving tolerance to physicochemical stress and attenuating proteolysis by proteases. Furthermore, the higher affinity observed with poloxamer conjugation compared to standard PEGylation results in improved therapeutic efficacy in rheumatoid arthritis mouse ...
Jaewon Roh   +3 more
wiley   +1 more source

Inhalable Nanotechnology-Based Drug Delivery Systems for the Treatment of Inflammatory Lung Diseases. [PDF]

open access: yesPharmaceutics
Mahmoud DE   +5 more
europepmc   +1 more source

Perfusable Brain Microvascular Network‐On‐Chip Model to Study Flavivirus NS1‐Induced Endothelial Dysfunction

open access: yesAdvanced Functional Materials, EarlyView.
This study presents a microfluidic brain microvascular network‐on‐chip (BMVasChip) to investigate endothelial barrier dysfunction caused by flavivirus non‐structural protein 1 (NS1), including virus‐ and time‐dependent vascular damage, leakiness, and dysfunction.
Monika Rajput   +5 more
wiley   +1 more source

Endocytic Programming via Porous Silicon Nanoparticles Enhances TLR4 Nanoagonist Potency for Macrophage‐Mediated Immunotherapy

open access: yesAdvanced Functional Materials, EarlyView.
Porous silicon nanoparticles (PSiNPs) reprogram macrophage endocytosis of manganese@albumin‐based TLR4 nanoagonists, driving TRIF‐biased TLR4 signaling, eliciting robust proinflammatory responses, and potentiating macrophage‐mediated immunotherapeutic effects against NSCLC.
Xiaomei Zhang   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy