Results 41 to 50 of about 3,002,307 (310)
Deep Learning for Forecasting Stock Returns in the Cross-Section
Many studies have been undertaken by using machine learning techniques, including neural networks, to predict stock returns. Recently, a method known as deep learning, which achieves high performance mainly in image recognition and speech recognition ...
A Subrahmanyam+12 more
core +1 more source
Single‐cell insights into the role of T cells in B‐cell malignancies
Single‐cell technologies have transformed our understanding of T cell–tumor cell interactions in B‐cell malignancies, revealing new T‐cell subsets, functional states, and immune evasion mechanisms. This Review synthesizes these findings, highlighting the roles of T cells in pathogenesis, progression, and therapy response, and underscoring their ...
Laura Llaó‐Cid
wiley +1 more source
From omics to AI—mapping the pathogenic pathways in type 2 diabetes
Integrating multi‐omics data with AI‐based modelling (unsupervised and supervised machine learning) identify optimal patient clusters, informing AI‐driven accurate risk stratification. Digital twins simulate individual trajectories in real time, guiding precision medicine by matching patients to targeted therapies.
Siobhán O'Sullivan+2 more
wiley +1 more source
Fairness in Machine Learning [PDF]
Machine learning based systems are reaching society at large and in many aspects of everyday life. This phenomenon has been accompanied by concerns about the ethical issues that may arise from the adoption of these technologies. ML fairness is a recently established area of machine learning that studies how to ensure that biases in the data and model ...
Oneto L., Chiappa S.
openaire +4 more sources
Equivariant diffusion for structure-based de novo ligand generation with latent-conditioning
We introduce PoLiGenX, a novel generative model for de novo ligand design that employs latent-conditioned, target-aware equivariant diffusion. Our approach leverages the conditioning of the ligand generation process on reference molecules located within ...
Tuan Le+3 more
doaj +1 more source
Identifying gene-specific subgroups: an alternative to biclustering
Background Transcriptome analysis aims at gaining insight into cellular processes through discovering gene expression patterns across various experimental conditions.
Vincent Branders+2 more
doaj +1 more source
Integrating ancestry, differential methylation analysis, and machine learning, we identified robust epigenetic signature genes (ESGs) and Core‐ESGs in Black and White women with endometrial cancer. Core‐ESGs (namely APOBEC1 and PLEKHG5) methylation levels were significantly associated with survival, with tumors from high African ancestry (THA) showing ...
Huma Asif, J. Julie Kim
wiley +1 more source
What is the machine learning? [PDF]
Applications of machine learning tools to problems of physical interest are often criticized for producing sensitivity at the expense of transparency. To address this concern, we explore a data planing procedure for identifying combinations of variables -- aided by physical intuition -- that can discriminate signal from background.
Chang, Spencer+2 more
openaire +3 more sources
Objective criteria for explanations of machine learning models
Objective criteria to evaluate the performance of machine learning (ML) model explanations are a critical ingredient in bringing greater rigor to the field of explainable artificial intelligence.
Chih‐Kuan Yeh, Pradeep Ravikumar
doaj +1 more source
There is an unmet need in metastatic breast cancer patients to monitor therapy response in real time. In this study, we show how a noninvasive and affordable strategy based on sequencing of plasma samples with longitudinal tracking of tumour fraction paired with a statistical model provides valuable information on treatment response in advance of the ...
Emma J. Beddowes+20 more
wiley +1 more source