Results 231 to 240 of about 416,214 (338)

Design of Efficient and Mechanically Robust Anion Exchange Membrane for Water Electrolysis Achieved by Chemically Crosslinked Elastomers using Polyfluorene‐Based Conjugated Polymers

open access: yesAdvanced Functional Materials, EarlyView.
High‐performance SEBS‐PFB AEM is developed by crosslinking SEBS‐amine with polyfluorene‐based crosslinker containing benzene spacer. With the superior electrochemical and mechanical properties, SEBS‐PFB enabled an AEMWE single cell to achieve a high current density of 14.0 A cm−2 at 2.0 V and 80 °C in 1 m KOH, using a PtRu/C cathode and Ni2Fe anode ...
Hyun Soo Kwon   +8 more
wiley   +1 more source

Multi‐Ion Doping Controlled CEI Formation in Structurally‐Stable High‐Energy Monoclinic‐Phase NASICON Cathodes for Sodium‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
The graphical abstract illustrates the synthesis pathway, morphological feature, and thermodynamic feasibility of entropy‐engineered NASICON cathodes for sodium‐ion batteries. Abstract Overcoming the energy density limitations of sodium‐ion batteries (NIBs) requires innovative strategies to optimize cathode materials.
Sharad Dnyanu Pinjari   +9 more
wiley   +1 more source

Integrating text mining and knowledge graph to enhance biopharmaceutical process optimization. [PDF]

open access: yesPLoS One
Bhowmik S   +8 more
europepmc   +1 more source

Upconversion Nanoparticles Embedded Photonic Contact Lens for Transepithelial Corneal Crosslinking Using Hyaluronate – Riboflavin Conjugate

open access: yesAdvanced Functional Materials, EarlyView.
A minimally invasive, transepithelial corneal cross‐linking (TE‐CXL) approach is presented using upconversion nanoparticles (UCNPs)‐loaded contact lenses (UCLs), after topical delivery of hyaluronate–riboflavin conjugates. The NIR‐to‐UV/blue light conversion by UCNPs in a UCL can activate riboflavin for TE‐CXL, resulting in the biomechanical strength ...
Gibum Lee   +8 more
wiley   +1 more source

Robust Bio‐Textiles Via Mycelium‐Cellulose Interface Engineering

open access: yesAdvanced Functional Materials, EarlyView.
This work introduces a new class of sustainable textiles by growing mycelium, the root‐like structure of fungi, into cellulose‐based fabrics. This semi‐interpenetrating mycelium‐cellulose fiber network combines the strength and breathability of natural fibers with the water‐resistant and adhesive properties of mycelium, resulting in a robust, scalable,
Wenhui Xu   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy