Results 41 to 50 of about 111,366 (230)
Electric control of magnetic tunnel junctions offers a path to drastically reduce the energy requirements of the device. Electric field control of magnetization can be realized in a multitude of ways. These mechanisms can be integrated into existing spintronic devices to further reduce the operational energy.
Will Echtenkamp +7 more
wiley +1 more source
The chemical composition and band alignment are systematically investigated at the TiO2/InP heterointerface. Thin TiO2 films are deposited by ALD on atomically ordered, P‐terminated p‐InP(100). By combining UPS, XPS, and ab initio molecular dynamics, the atomistic structure and electronic alignment are revealed.
Mohammad Amin Zare Pour +11 more
wiley +1 more source
The study presents biodegradable and recyclable mixed‐matrix membranes (MMMs), hydrogels, and cryogels using luminescent nanoscale metal‐organic frameworks (nMOFs) and biopolymers. These bio‐nMOF‐MMMs combine europium‐based nMOFs as probes for the status of the materials with the biopolymers agar and gelatine and present alternatives to conventional ...
Moritz Maxeiner +4 more
wiley +1 more source
Integrable lattice spin models from supersymmetric dualities
Recently, there has been observed an interesting correspondence between supersymmetric quiver gauge theories with four supercharges and integrable lattice models of statistical mechanics such that the two-dimensional spin lattice is the quiver diagram ...
A. G. Izergin +124 more
core +1 more source
This study demonstrates that pulsed potential electrolysis significantly improves CO2 reduction performance on copper‐nitrogen doped carbon electrodes. The formation of cationic copper sites and metallic clusters as a function of applied intermittent potential leads to notable selectivity changes compared to potentiostatic reduction.
Dorottya Hursán +13 more
wiley +1 more source
On The Harmonic Oscillator Group [PDF]
We discuss the maximum kinematical invariance group of the quantum harmonic oscillator from a view point of the Ermakov-type system. A six parameter family of the square integrable oscillator wave functions, which seems cannot be obtained by the standard
Lopez, Raquel M. +2 more
core
Developments in Random Matrix Theory
In this preface to the Journal of Physics A, Special Edition on Random Matrix Theory, we give a review of the main historical developments of random matrix theory.
Forrester, P. J. +2 more
core +1 more source
A reproducible synthesis to control 3D/0D phase ratios via water‐tuned solvent–antisolvent methods is presented. Enhanced scintillation yield and ultrafast decay are achieved. Defect‐driven emission mechanisms are revealed through cathodoluminescence and radioluminescence, shedding light on the underexplored role of the 0D Cs4PbBr6 and mixed 0D/3D ...
Mario Calora +18 more
wiley +1 more source
An ultra‐robust memristor based on SrTiO3‐CeO2 (S‐C) vertically aligned nanocomposite (VAN) achieving exceptional endurance of 1012 switching cycles via interface engineering. Artificial neural networks (ANNs) integrated with S‐C VAN memristors exhibit high training accuracy across multiple datasets.
Zedong Hu +12 more
wiley +1 more source
Unleashing the Power of Machine Learning in Nanomedicine Formulation Development
A random forest machine learning model is able to make predictions on nanoparticle attributes of different nanomedicines (i.e. lipid nanoparticles, liposomes, or PLGA nanoparticles) based on microfluidic formulation parameters. Machine learning models are based on a database of nanoparticle formulations, and models are able to generate unique solutions
Thomas L. Moore +7 more
wiley +1 more source

