Results 31 to 40 of about 1,376,106 (282)

NanoMOF‐Based Multilevel Anti‐Counterfeiting by a Combination of Visible and Invisible Photoluminescence and Conductivity

open access: yesAdvanced Functional Materials, EarlyView.
This study presents novel anti‐counterfeiting tags with multilevel security features that utilize additional disguise features. They combine luminescent nanosized Ln‐MOFs with conductive polymers to multifunctional mixed‐matrix membranes and powder composites. The materials exhibit visible/NIR emission and matrix‐based conductivity even as black bodies.
Moritz Maxeiner   +9 more
wiley   +1 more source

Aristotelianism in the Philosophy of Mathematics [PDF]

open access: yes, 2011
Modern philosophy of mathematics has been dominated by Platonism and nominalism, to the neglect of the Aristotelian realist option. Aristotelianism holds that mathematics studies certain real properties of the world – mathematics is neither about a ...
Franklin, James
core  

Synchrotron Radiation for Quantum Technology

open access: yesAdvanced Functional Materials, EarlyView.
Materials and interfaces underpin quantum technologies, with synchrotron and FEL methods key to understanding and optimizing them. Advances span superconducting and semiconducting qubits, 2D materials, and topological systems, where strain, defects, and interfaces govern performance.
Oliver Rader   +10 more
wiley   +1 more source

Enhancing Low‐Temperature Performance of Sodium‐Ion Batteries via Anion‐Solvent Interactions

open access: yesAdvanced Functional Materials, EarlyView.
DOL is introduced into electrolytes as a co‐solvent, increasing slat solubility, ion conductivity, and the de‐solvent process, and forming an anion‐rich solvent shell due to its high interaction with anion. With the above virtues, the batteries using this electrolyte exhibit excellent cycling stability at low temperatures. Abstract Sodium‐ion batteries
Cheng Zheng   +7 more
wiley   +1 more source

Discrete Mathematics/Number Theory

open access: yes, 2017
Discrete mathematics is the study of mathematical structures that are fundamentally discrete rather than continuous. In contrast to real numbers that have the property of varying "smoothly", the objects studied in discrete mathematics such as integers, graphs, and statements do not vary smoothly in this way, but have distinct, separated values ...
openaire   +1 more source

Formalizing Mathematical Knowledge as a Biform Theory Graph: A Case Study

open access: yes, 2017
A biform theory is a combination of an axiomatic theory and an algorithmic theory that supports the integration of reasoning and computation. These are ideal for formalizing algorithms that manipulate mathematical expressions. A theory graph is a network
BE Aydemir   +12 more
core   +1 more source

Pentagonal 2D Altermagnets: Material Screening and Altermagnetic Tunneling Junction Device Application

open access: yesAdvanced Functional Materials, EarlyView.
From a database of 170 pentagonal 2D materials, 4 candidates exhibiting altermagnetic ordering are screened. Furthermore, the spin‐splitting and unconventional boundary states in the pentagonal 2D altermagnetic monolayer MnS2 are investigated. A MnS2‐based altermagnetic tunneling junction is designed and, through ab initio quantum transport simulations,
Jianhua Wang   +8 more
wiley   +1 more source

Numbers and functions in Hilbert's finitism [PDF]

open access: yes, 1998
David Hilbert's finitistic standpoint is a conception of elementary number theory designed to answer the intuitionist doubts regarding the security and certainty of mathematics.
Zach, Richard
core  

Unimodality Problems in Ehrhart Theory

open access: yes, 2017
Ehrhart theory is the study of sequences recording the number of integer points in non-negative integral dilates of rational polytopes. For a given lattice polytope, this sequence is encoded in a finite vector called the Ehrhart $h^*$-vector. Ehrhart $h^*
A. Stapledon   +45 more
core   +1 more source

Prospects of Electric Field Control in Perpendicular Magnetic Tunnel Junctions and Emerging 2D Spintronics for Ultralow Energy Memory and Logic Devices

open access: yesAdvanced Functional Materials, EarlyView.
Electric control of magnetic tunnel junctions offers a path to drastically reduce the energy requirements of the device. Electric field control of magnetization can be realized in a multitude of ways. These mechanisms can be integrated into existing spintronic devices to further reduce the operational energy.
Will Echtenkamp   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy