Results 51 to 60 of about 53,788 (249)

Kinetic Insights into Precursor‐Assisted Soft Sphere Close Packing Revealed by In Situ GISAXS with Implications for Gas Sensing

open access: yesAdvanced Functional Materials, EarlyView.
The versatile precursor‐assisted soft sphere close packing during slot‐die coating is investigated with in situ X‐ray scattering. The soft crystallization pathways towards a close packing involve multistep structural transitions such as surface nucleation, in‐plane, and out‐of‐plane crystallization.
Guangjiu Pan   +14 more
wiley   +1 more source

Reconfigurable Three‐Dimensional Superconducting Nanoarchitectures

open access: yesAdvanced Functional Materials, EarlyView.
3D superconducting nanostructures offer new possibilities for emergent physical phenomena. However, fabricating complex geometries remains challenging. Here 3D nanoprinting of complex 3D superconducting nanoarchitectures is established. As well as propagating superconducting vortices in 3D, anisotropic superconducting properties with geometric ...
Elina Zhakina   +11 more
wiley   +1 more source

Composition and Resulting Band Alignment at the TiO2/InP Heterointerface: A Fundamental Study Combining Photoemission Spectroscopy and Theory

open access: yesAdvanced Functional Materials, EarlyView.
The chemical composition and band alignment are systematically investigated at the TiO2/InP heterointerface. Thin TiO2 films are deposited by ALD on atomically ordered, P‐terminated p‐InP(100). By combining UPS, XPS, and ab initio molecular dynamics, the atomistic structure and electronic alignment are revealed.
Mohammad Amin Zare Pour   +11 more
wiley   +1 more source

CO2 Reduction on Copper‐Nitrogen‐Doped Carbon Catalysts Tuned by Pulsed Potential Electrolysis: Effect of Pulse Potential

open access: yesAdvanced Functional Materials, EarlyView.
This study demonstrates that pulsed potential electrolysis significantly improves CO2 reduction performance on copper‐nitrogen doped carbon electrodes. The formation of cationic copper sites and metallic clusters as a function of applied intermittent potential leads to notable selectivity changes compared to potentiostatic reduction.
Dorottya Hursán   +13 more
wiley   +1 more source

Defect‐Mediated Scintillation in Fully Inorganic Perovskites via Water‐Induced 0D/3D Phase Modulation

open access: yesAdvanced Functional Materials, EarlyView.
A reproducible synthesis to control 3D/0D phase ratios via water‐tuned solvent–antisolvent methods is presented. Enhanced scintillation yield and ultrafast decay are achieved. Defect‐driven emission mechanisms are revealed through cathodoluminescence and radioluminescence, shedding light on the underexplored role of the 0D Cs4PbBr6 and mixed 0D/3D ...
Mario Calora   +18 more
wiley   +1 more source

An Ultra‐Robust Memristor Based on Vertically Aligned Nanocomposite with Highly Defective Vertical Channels for Neuromorphic Computing

open access: yesAdvanced Functional Materials, EarlyView.
An ultra‐robust memristor based on SrTiO3‐CeO2 (S‐C) vertically aligned nanocomposite (VAN) achieving exceptional endurance of 1012 switching cycles via interface engineering. Artificial neural networks (ANNs) integrated with S‐C VAN memristors exhibit high training accuracy across multiple datasets.
Zedong Hu   +12 more
wiley   +1 more source

Unleashing the Power of Machine Learning in Nanomedicine Formulation Development

open access: yesAdvanced Functional Materials, EarlyView.
A random forest machine learning model is able to make predictions on nanoparticle attributes of different nanomedicines (i.e. lipid nanoparticles, liposomes, or PLGA nanoparticles) based on microfluidic formulation parameters. Machine learning models are based on a database of nanoparticle formulations, and models are able to generate unique solutions
Thomas L. Moore   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy