Results 171 to 180 of about 834,250 (307)

Supercompliant Lattice Boosts n‐type AgSbTe2 Thermoelectrics

open access: yesAdvanced Functional Materials, EarlyView.
The supercompliant lattice design enables the first realization of n‐type electrical transport in AgSbTe2 by overcoming intrinsic electron‐killer defects and exceeding the doping limits imposed by the conventional Hume–Rothery rule. Accordingly, the best performance n‐type Ag0.8Na0.3Sb0.6Bi0.4Te2 sample achieves a low κ of 0.27 W·m−1·K−1 that ...
Ruoyan Li   +15 more
wiley   +1 more source

Ultrafast Energy Transfer Induced Lasing From a Coplanar Donor‐Acceptor‐Donor Molecule in a Microspherical Cavity

open access: yesAdvanced Functional Materials, EarlyView.
This study presents a novel donor‐bridge‐acceptor‐bridge‐donor (D‐B‐A‐B‐D) molecular system, which shows near‐unity intramolecular excitation energy transfer (IET) from two identical energy donors to a coplanar acceptor. It enables a four‐level energy system for efficient lasing at the acceptor emission band in a microspherical cavity with a low lasing
Vishal Kumar   +6 more
wiley   +1 more source

Fully Bio‐Based Epoxy Resins from Liquefied Wood for Chemically Recyclable Wood Coatings

open access: yesAdvanced Functional Materials, EarlyView.
A bio‐based and chemically recyclable epoxy resin derived from liquefied wood and its use in wood coatings is presented. The resin exhibits mechanical, thermal, and water‐resistant properties comparable to commercial coatings and can be chemically recycled and reused. This approach provides fast access to glossy and fully biobased durable wood coatings
Qisong Hu   +6 more
wiley   +1 more source

“Writing” Crystal Phases in Amorphous Calcium Carbonate via Laser‐Induced Patterned Transformations

open access: yesAdvanced Functional Materials, EarlyView.
Laser‐induced crystallization enabling the patterning of amorphous calcium carbonate into various distinct phases is introduced. This approach provides spatial control over polymorph selection, both crystalline and amorphous, inspired by biomineralization pathways.
Hadar Shaked   +6 more
wiley   +1 more source

Deciphering a New Electrolyte Formulation for Intelligent Modulation of Thermal Runaway to Improve the Safety of Lithium‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
Diels‐Alder clicks chemistry addresses thermal runaway in lithium‐ion batteries. A thermoresponsive electrolyte with lithium salt in vinylene carbonate (VC) and 2,5‐dimethylfuran (DMFu) operates at room temperature but undergoes Diels‐Alder reactions at high temperatures, enabling a two‐step safety mechanism: a warning phase at ≈100 °C and complete ...
Arnab Ghosh   +9 more
wiley   +1 more source

Atomic Size Misfit for Electrocatalytic Small Molecule Activation

open access: yesAdvanced Functional Materials, EarlyView.
This review explores the application and mechanisms of atomic size misfit in catalysis for small molecule activation, focusing on how structural defects and electronic properties can effectively lower the energy barriers of chemical bonds in molecules like H2O, CO2, and N2.
Ping Hong   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy