Results 181 to 190 of about 760,127 (285)

Midbrain PAG Astrocytes Modulate Mouse Defensive and Panic‐Like Behaviors

open access: yesAdvanced Science, EarlyView.
Astrocytes in the midbrain periaqueductal gray (PAG) dynamically encode threat intensity and shape defensive action selection in mice. Real‐time Ca2+ imaging reveals robust astrocytic activation during predator odor and CO2 exposure. Aberrant astrocytic Ca2+ overactivation disrupts goal‐directed escape, biases behavior toward freezing, and induces ...
Ellane Barcelon   +10 more
wiley   +1 more source

Modifying Glucose Metabolism Reverses Memory Defects of Alzheimer's Disease Model at Late Stages

open access: yesAdvanced Science, EarlyView.
Using spatial transcriptomics, we show that ferul enanthate (SL‐ZF‐01) reverses episodic‐like memory deficits in aged, but not young, Alzheimer’s disease (AD) mice. SL restores glucose metabolism and Glucose Transporter 1/3 expression via an ‘Aging‐AD‐Rescue’ pattern, rescuing deficits seen in aged AD mice.
Fang Liu   +14 more
wiley   +1 more source

Game-based learning in nursing: a systematic review. [PDF]

open access: yesBMC Med Educ
Küçük Yüceyurt N, Altiner Yaş M.
europepmc   +1 more source

Nanoscale Mapping of the Subcellular Glycosylation Landscape

open access: yesAdvanced Science, EarlyView.
Using multiplexed super‐resolution imaging with fluorophore‐labeled lectins, this study reports intracellular glycosylation at the nanoscale across organelles and synaptic specializations. Extending glycan analysis beyond the cell surface, Glyco‐STORM reveals distinct glycosylation nanodomains in the ER, Golgi, lysosomes, and synaptic sites.
Helene Gregoria Schroeter   +4 more
wiley   +1 more source

Vitamin D Regulates Olfactory Function via Dual Transcriptional and mTOR‐Dependent Translational Control of Synaptic Proteins

open access: yesAdvanced Science, EarlyView.
Vitamin D (VitD) modulates olfactory function by remodeling dendrodendritic synapses in tufted cells through vitamin D receptor‐dependent transcriptional and translational mechanisms. VitD regulates synaptic protein translation partially via mTOR signaling.
Pengcheng Ren   +9 more
wiley   +1 more source

NDST3‐Induced Epigenetic Reprogramming Reverses Neurodegeneration in Parkinson's Disease

open access: yesAdvanced Science, EarlyView.
NDST3‐mediated epigenetic reprogramming revitalizes neuronal circuits in the substantia nigra and striatum to halt dopaminergic neuron degeneration and restore motor function in Parkinson's disease models. This strategy promotes neuronal maintenance and functional recovery, highlighting NDST3's therapeutic potential in neurodegenerative disorders ...
Yujung Chang   +18 more
wiley   +1 more source

Home - About - Disclaimer - Privacy