Results 241 to 250 of about 12,904,370 (340)
DDX3X induces mesenchymal transition of endothelial cells by disrupting BMPR2 signaling
Elevated DDX3X expression led to downregulation of BMPR2, a key regulator of endothelial homeostasis and function. Our co‐immunoprecipitation assays further demonstrated a molecular interaction between DDX3X and BMPR2. Notably, DDX3X promoted lysosomal degradation of BMPR2, thereby impairing its downstream signaling and facilitating endothelial‐to ...
Yu Zhang +7 more
wiley +1 more source
Stamp collecting game improves internship performance and experience in medical education. [PDF]
Han M, Shi W, Yu L, Yuan T, Zhang Y.
europepmc +1 more source
Calendar of continuing medical education [PDF]
David E. Allie, Craig Walker
openalex +1 more source
TMC4 localizes to multiple taste cell types in the mouse taste papillae
Transmembrane channel‐like 4 (TMC4), a voltage‐dependent chloride channel, plays a critical role in amiloride‐insensitive salty taste transduction. TMC4 is broadly expressed in all mature taste cell types, suggesting a possible involvement of multiple cell types in this pathway.
Momo Murata +6 more
wiley +1 more source
Artificial intelligence in undergraduate medical education: an updated scoping review. [PDF]
Simoni J +11 more
europepmc +1 more source
Fertility and sterility® continuing medical education questions [PDF]
openalex +1 more source
SIRT4 positively regulates autophagy via ULK1, but independently of HDAC6 and OPA1
Cells expressing SIRT4 (H161Y), a catalytically inactive mutant of the sirtuin SIRT4, fail to upregulate LC3B‐II and exhibit a reduced autophagic flux under stress conditions. Interestingly, SIRT4(H161Y) promotes phosphorylation of ULK1 at S638 and S758 that are associated with inhibition of autophagy initiation.
Isabell Lehmkuhl +13 more
wiley +1 more source
The Future of Rural Medical Education in Australia. [PDF]
Padley J.
europepmc +1 more source

