Results 101 to 110 of about 135,401 (323)
Dry electrode technology revolutionizes battery manufacturing by eliminating toxic solvents and energy‐intensive drying. This work details two promising techniques: dry spray deposition and polymer fibrillation. How their unique solvent‐free bonding mechanisms create uniform microstructures for thicker, denser electrodes, boosting energy density and ...
Yuhao Liang +7 more
wiley +1 more source
Annexin-A5 assembled into two-dimensional arrays promotes cell membrane repair [PDF]
Eukaryotic cells possess a universal repair machinery that ensures rapid resealing of plasma membrane disruptions. Before resealing, the torn membrane is submitted to considerable tension, which functions to expand the disruption.
A Brisson +56 more
core +2 more sources
Human carbonic anhydrase IX (CA IX) is a multi-domain membrane protein that is therefore difficult to express or crystalize. To prepare crystals that are suitable for neutron studies, we are using only the catalytic domain of CA IX with six surface ...
Katarina Koruza +4 more
doaj +1 more source
Electroactive Liquid Crystal Elastomers as Soft Actuators
Electroactive liquid crystal elastomers (eLCEs) can be actuated via electromechanical, electrochemical, or electrothermal effects. a) Electromechanical effects include Maxwell stress, electrostriction, and the electroclinic effect. b) Electrochemical effects arise from electrode redox reactions.
Yakui Deng, Min‐Hui Li
wiley +1 more source
An electrostatic mechanism for Ca(2+)-mediated regulation of gap junction channels. [PDF]
Gap junction channels mediate intercellular signalling that is crucial in tissue development, homeostasis and pathologic states such as cardiac arrhythmias, cancer and trauma.
Abagyan, Ruben +9 more
core +3 more sources
A FeN4─O/Clu@NC‐0.1Ac catalyst containing atomically‐dispersed FeN4─O sites (medium‐spin Fe2+) and Fe clusters delivered a half‐wave potential of 0.89 V for ORR and an overpotential of 330 mV at 10 mA cm−2 for OER in 0.1 m KOH. When the catalyst was used in a rechargeable Zn–air battery, a power density of 284.5 mW cm−2 was achieved with excellent ...
Yongfang Zhou +8 more
wiley +1 more source
In situ TEM uncovers the atomic‐scale mechanisms underlying hydrogen‐driven γ‐Fe2O3→Fe3O4→FeO reduction. In γ‐Fe2O3, oxygen vacancies cluster around intrinsic Fe vacancies, leading to nanopore formation, whereas in Fe3O4, vacancy aggregation is suppressed, preserving a dense structure.
Yupeng Wu +14 more
wiley +1 more source
Synthesis And Characterization Of Pure-Silica- Zeolite-Beta Membrane
The semiconductor industry needs low dielectric constant (low k-value) materials to more advance microprocessor and chips by reducing the size of the device features. In fabricate this context, a new material with lower k value than conventional silica (
Yeong Yin Fong, Subhash Bhatia
doaj +1 more source
From Waste to Value: Conversion of Calcium Sulfate to Vaterite via Carbon Capture and Storage
This study introduces a new concept for carbon management that relies on the carbonation of industrial gypsum waste and yields phase‐pure vaterite at ambient conditions without any additives. The obtained vaterite is further shown to be a reactive material that develops compressive strength in aqueous suspensions like conventional cements.
Carlos Pimentel +4 more
wiley +1 more source
The article reviews laser‐processed carbons from various precursors, processing mechanism and their application in advanced batteries. The laser process is chemical free, fast, and scalable, enabling improved battery performance and stability for Li, Na, and Zn battery technologies.
Sujit Deshmukh +2 more
wiley +1 more source

