Results 71 to 80 of about 257,181 (321)
Long non‐coding RNAs (lncRNAs) occupy an abundant fraction of the eukaryotic transcriptome and an emerging area in cancer research. Regulation by lncRNAs is based on their subcellular localization in HNSCC. This cartoon shows the various functions of lncRNAs in HNSCC discussed in this review.
Ellen T. Tran+3 more
wiley +1 more source
Dynamic Model for RNA-seq Data Analysis [PDF]
The newly developed deep-sequencing technologies make it possible to acquire both quantitative and qualitative information regarding transcript biology. By measuring messenger RNA levels for all genes in a sample, RNA-seq provides an attractive option to characterize the global changes in transcription.
arxiv
Stem cell‐based embryo models (SCBEMs) are valuable to study early developmental milestones. Matrigel, a basement membrane matrix, is a critical substrate used in various SCBEM protocols, but its role in driving stem cell lineage commitment is not clearly defined.
Atoosa Amel+3 more
wiley +1 more source
Extracellular vesicles (EVs) play a dual role in diagnostics and therapeutics, offering innovative solutions for treating cancer, cardiovascular, neurodegenerative, and orthopedic diseases. This review highlights EVs’ potential to revolutionize personalized medicine through specific applications in disease detection and treatment.
Farbod Ebrahimi+4 more
wiley +1 more source
Recent reports show that long non-coding RNAs (lncRNAs) have inefficient splicing and fewer alternative splice variants than mRNAs. Here, we have explored the efficiency of lncRNAs and mRNAs in producing various splice variants, given the number of exons
Koushiki Basu, Anubha Dey, Manjari Kiran
doaj +1 more source
Stochastic gene expression with delay [PDF]
The expression of genes usually follows a two-step procedure. First, a gene (encoded in the genome) is transcribed resulting in a strand of (messenger) RNA. Afterwards, the RNA is translated into protein. Classically, this gene expression is modeled using a Markov jump process including activation and deactivation of the gene, transcription and ...
arxiv
Synthetic cells are engineered herein to respond to an external chemical messenger by the activation of intracellular catalysis. The chemical messenger molecules are catalytically generated by an extracellular enzyme or a mineral surface, whereas the intracellular catalysis emerges via direct enzyme activation or via protein refolding.
Dante G. Andersen+5 more
wiley +1 more source
Dynamics of gene expression and the regulatory inference problem [PDF]
From the response to external stimuli to cell division and death, the dynamics of living cells is based on the expression of specific genes at specific times. The decision when to express a gene is implemented by the binding and unbinding of transcription factor molecules to regulatory DNA.
arxiv +1 more source
Bifunctional transfer-messenger RNA [PDF]
Transfer-messenger RNA (tmRNA) is a bifunctional RNA that has properties of a tRNA and an mRNA. tmRNA uses these two functions to release ribosomes stalled during translation and target the nascent polypeptides for degradation. This concerted reaction, known as trans-translation, contributes to translational quality control and regulation of gene ...
Kenneth C. Keiler, Nitya S. Ramadoss
openaire +3 more sources
Recent Applications of Mesoporous Silica Nanoparticles in Gene Therapy
The review summarizes the synthesis of mesoporous silica nanoparticles (MSNs) with modifiable surface properties, functionalization strategies, mechanism of therapeutic payload release, and current applications in gene therapy, focusing on their capabilities in the targeted delivery of therapeutic nucleic acids, CRISPR‐Cas systems, and other genetic ...
Tamanna Binte Huq+4 more
wiley +1 more source