The cytoplasmic domain of CD4 promotes the development of CD4 lineage T cells. [PDF]
Thymocytes must bind major histocompatibility complex (MHC) proteins on thymic epithelial cells in order to mature into either CD8+ cytotoxic T cells or CD4+ helper T cells.
Corbella, P +5 more
core
Modifying Glucose Metabolism Reverses Memory Defects of Alzheimer's Disease Model at Late Stages
Using spatial transcriptomics, we show that ferul enanthate (SL‐ZF‐01) reverses episodic‐like memory deficits in aged, but not young, Alzheimer’s disease (AD) mice. SL restores glucose metabolism and Glucose Transporter 1/3 expression via an ‘Aging‐AD‐Rescue’ pattern, rescuing deficits seen in aged AD mice.
Fang Liu +14 more
wiley +1 more source
CTRP2 overexpression improves insulin and lipid tolerance in diet-induced obese mice.
CTRP2 is a secreted plasma protein of the C1q family that enhances glycogen deposition and fat oxidation in cultured myotubes. Its in vivo metabolic function, however, has not been established.
Jonathan M Peterson +3 more
doaj +1 more source
Vitamin D (VitD) modulates olfactory function by remodeling dendrodendritic synapses in tufted cells through vitamin D receptor‐dependent transcriptional and translational mechanisms. VitD regulates synaptic protein translation partially via mTOR signaling.
Pengcheng Ren +9 more
wiley +1 more source
Tendon Organoids Enable Functional Tendon Rejuvenation Through ALKBH5‐Dependent RNA Demethylation
FT organoids reverse the aged phenotype of tendon cells, reinstating a fetal‐like state. This breakthrough establishes a potent cell source for tendon tissue engineering, effectively advancing regenerative medicine. ABSTRACT Adult tendon injuries pose a major clinical challenge due to limited self‐repair capacity, resulting in suboptimal regeneration ...
Tian Qin +14 more
wiley +1 more source
Targeting a therapeutic LIF transgene to muscle via the immune system ameliorates muscular dystrophy. [PDF]
Many potentially therapeutic molecules have been identified for treating Duchenne muscular dystrophy. However, targeting those molecules only to sites of active pathology is an obstacle to their clinical use.
Bertoni, Carmen +6 more
core
Metformin Impairs Breast Cancer Growth through the Inhibition of PRMT6
Metformin has a biological activity against breast cancer. However, it is largely unknown about its precise therapeutic targets. Here, histone arginine methyltransferase PRMT6 is identified as a new anti‐cancer target for metformin. Metformin directly binds PRMT6 and inhibits its ability to catalyze histone H3R2 asymmetric dimethylation (H3R2me2a ...
Yinsheng Wu +9 more
wiley +1 more source
The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice
L. Bao +48 more
semanticscholar +1 more source
Stabilized Ion Selectivity Corrects Activation Drift in Kalium Channelrhodopsins
As newly emerged optogenetic tools, potassium channelrhodopsins (KCRs) can drift from inhibition to activation during illumination as K⁺ selectivity declines. It is shown that both the absolute K⁺/Na⁺ permeability ratio and its stability over time govern this drift, identify KCR1‐C29D as a reliably inhibitory variant, and outline design principles for ...
Xiao Duan +14 more
wiley +1 more source
DEL‐1 is an Endogenous Senolytic Protein that Inhibits Senescence‐Associated Bone Loss
Senescent bone marrow stromal cells accumulate in the aging bone microenvironment, promoting bone degeneration. DEL‐1, an endogenous secreted protein, acts as a natural senolytic that selectively eliminates these cells. By engaging a β3 integrin/CD73/adenosine/p38 MAPK/BCL‐2 pathway, DEL‐1 counters aging‐related bone loss, revealing promising ...
Jong‐Hyung Lim +11 more
wiley +1 more source

