Results 201 to 210 of about 225,804 (391)
Citation: 'polymer microparticle' in the IUPAC Compendium of Chemical Terminology, 5th ed.; International Union of Pure and Applied Chemistry; 2025. Online version 5.0.0, 2025. 10.1351/goldbook.14276 • License: The IUPAC Gold Book is licensed under Creative Commons Attribution-ShareAlike CC BY-SA 4.0 International for individual terms.
openaire +1 more source
The impact of carbamazepine crystallinity on carbamazepine-loaded microparticle formulations
Saeid Mezail Mawazi +3 more
openalex +2 more sources
Laser Micromachining of Liquid Metal Patterns for Stretchable Electronic Circuits
A cleanroom‐free fabrication strategy combines UV‐laser micromachining with a copper foil wetting layer to rapidly produce high resolution, liquid metal based stretchable electronic circuits on diverse substrates. The scalable, maskless process enables complex circuit designs (<$<$3 h, ∼$\sim$15/device) with excellent electrical stability under strain,
Merjen Palvanova +3 more
wiley +1 more source
Microfluidic fabrication of microparticles for biomedical applications.
Wen Li +10 more
semanticscholar +1 more source
4D Printing of Multimaterial Flexible Magneto‐Active Polymers
Magneto‐active polymers are 3D‐printed with tunable mechanical and magnetic properties using both superparamagnetic and hard ferromagnetic fillers. Nano‐CT imaging reveals the spatial distribution of particles within the matrix. Programmable magnetization patterns and soft, flexible architectures enable responsive actuation, offering exciting ...
Naji Tarabay +6 more
wiley +1 more source
This review traces the evolution of wireless power transfer (WPT) for implantable medical devices, spanning electromagnetic, magnetoelectric, acoustic, and magneto‐dynamic systems. Quantitative comparisons of power, distance, and device scale highlight trade‐offs across modalities, while emerging hybrid mechanisms reveal strategies to overcome ...
Junyeop Kim, Yoonseok Park
wiley +1 more source
Adhesive Double‐Network Granular Organogel E‐Skin
We introduce a double‐network granular organogel adhesive for electronic skin, overcoming adhesion and strength trade‐offs. It provides reversible, robust bonding and ionic conductivity, enabling wearable and soft robotic e‐skin. Thanks to the e‐skin adhesive, a soft robotic trunk can recognize touch, temperature, humidity, and acidity.
Antonia Georgopoulou +4 more
wiley +1 more source

