Results 191 to 200 of about 1,221,835 (366)

Butterfly‐Inspired Hierarchical Hybrid Composites for Lightweight Structural Thermal Management Applications

open access: yesAdvanced Functional Materials, EarlyView.
Emulating nature's unparalleled engineering, this work introduces butterfly‐inspired hybrid composites for high‐performance transportation and defense sectors. Leveraging biomimicry, these lightweight composites feature butterfly leg‐inspired hierarchical fibrous assemblies and butterfly wing‐inspired sandwich‐structured architecture, to achieve ...
Nello D. Sansone   +7 more
wiley   +1 more source

Viscoelastic differences between isolated and live MCF7 cancer cell nuclei resolved with AFM microrheology. [PDF]

open access: yesJ R Soc Interface
Juel Pørtner E   +5 more
europepmc   +1 more source

Advanced Micro‐OLED Integration on Thin and Flexible Polymer Neural Probes for Targeted Optogenetic Stimulation

open access: yesAdvanced Functional Materials, EarlyView.
This paper introduces a flexible neural probe with integrated micro‐OLEDs on a flexible substrate for the first time, featuring 8 micro‐OLEDs and recording electrodes for optogenetics. It uses advanced encapsulation and an IAI anode for durability, emitting 470 nm light for ChR2 activation, enabling high‐resolution, minimally invasive stimulation ...
Somin Lee   +8 more
wiley   +1 more source

Shape‐Stabilization of Phase Change Materials with Carbon‐Conscious Poly(hydroxy)Urethane Foams

open access: yesAdvanced Functional Materials, EarlyView.
Poly(hydroxy)urethane (PHU) foam, derivable from carbon dioxide (CO2) and bio‐based resources, is a promising material platform for shape‐stabilizing phase change materials (PCMs). We demonstrate the encapsulation of both paraffins and calcium chloride hexahydrate in PHU foam, achieving 48 stable thermal cycles by introducing 5 wt.% barium carbonate ...
Minjung Lee   +5 more
wiley   +1 more source

Bi‐Directional Assembly of Boron Nitride µ‐Platelets by Micro‐Molding for Advanced Thermal Interface Materials

open access: yesAdvanced Functional Materials, EarlyView.
Bi‐directionally assembled BN µ‐platelets in micropatterns formed by a micro‐molding method for thermal interface materials are demonstrated. The BN µ‐platelets are vertically aligned selectively, while compressed regions without patterns accommodate horizontally assembled BN µ‐platelets. Through anisotropic orientation, high thermal conductivities for
Young Gil Kim   +12 more
wiley   +1 more source

Home - About - Disclaimer - Privacy