Results 211 to 220 of about 959,479 (336)
Microplastics from Wearable Bioelectronic Devices: Sources, Risks, and Sustainable Solutions
Bioelectronic devices (e.g., e‐skins) heavily rely on polymers that at the end of their life cycle will generate microplastics. For research, a holistic approach to viewing the full impact of such devices cannot be overlooked. The potential for devices as sources for microplastics is raised, with mitigation strategies surrounding polysaccharide and ...
Conor S. Boland
wiley +1 more source
Negative and Reversible Magnetorheological Response for Magnetic Rubbers. [PDF]
Kanamori R +4 more
europepmc +1 more source
A Numerical Approach on Reduction of Young’s Modulus During Deformation of Sheet Metals
Chetan P. Nikhare
openalex +2 more sources
Generating Cell Surface Nucleated Hydrogels with an Artificial Membrane‐Binding Transglutaminase
Cell‐based therapies require advanced strategies to enhance cell delivery and bioactivity. Cell membrane engineering offers an avenue to impart new functions to delivered cells to boost their viability and function. Here, an artificial membrane‐binding transglutaminase is generated and biophysically characterized.
Rosalia Cuahtecontzi Delint +6 more
wiley +1 more source
Back-calculation of Asphalt Pavement Modulus based on Gene Expression Programming
Yue Hu, Kezhen Yan, Yingbin Hu
openalex +2 more sources
Integrative Approaches for DNA Sequence‐Controlled Functional Materials
DNA is emerging as a programmable building block for functional materials with applications in biomimicry, biochemical, and mechanical information processing. The integration of simulations, experiments, and machine learning is explored as a means to bridge DNA sequences with macroscopic material properties, highlighting current advances and providing ...
Aaron Gadzekpo +4 more
wiley +1 more source
Nanoindentation Analysis of SU-8 Coated Wafers at Different Baking Phases. [PDF]
Tarjányi T +7 more
europepmc +1 more source
The self‐healable ratiometric mechano‐fluorescent polyurethane (PU) organogel is constructed by incorporating a minor amount (ca. 1.5 wt.%) of the unconventional daisy chain rotaxane (as an artificial molecular muscle toughener) with specific sliding motions and ratiometric emission behaviors into the PU skeleton, which reveals the progressed intrinsic
Tu Thi Kim Cuc +7 more
wiley +1 more source

