Results 261 to 270 of about 5,447,185 (383)
Unveiling local molecular desorption dynamics using higher-order optical resonances. [PDF]
Deng M+7 more
europepmc +1 more source
Ultrahigh Piezoelectricity in Truss‐Based Ferroelectric Ceramics Metamaterials
By leveraging the unique combination of polarization direction and loading state, ultrahigh piezoelectricity is achieved through careful tuning of the relative density and scaling ratio in truss‐based ferroelectric metamaterials. This approach enables the simultaneous realization of extremely high piezoelectric constants and ultralow dielectric ...
Jiahao Shi+6 more
wiley +1 more source
Institute for Molecular Physics at the University of Maryland
J. V. Sengers
openalex +2 more sources
Structurally Colored Physically Unclonable Functions with Ultra‐Rich and Stable Encoding Capacity
This study reports a design strategy for generating bright‐field resolvable physically unclonable functions with extremely rich encoding capacity coupled with outstanding thermal and chemical stability. The optical response emerges from thickness‐dependent structural color formation in ZnO features, which are fabricated by physical vapor deposition ...
Abidin Esidir+8 more
wiley +1 more source
Atomic, Molecular, and Optical Physics Workshop Final Report
Jr. Benjamin F. Armstrong
openalex +1 more source
Simplified, Physically Motivated, and Broadly Applicable Range-Separation Tuning. [PDF]
Singh A+5 more
europepmc +1 more source
By fabricating and covalently assembling gelatin methacryloyl (GelMA) porous microgels, a new class of granular hydrogel scaffolds with hierarchical porosity is developed. These scaffolds have a significantly higher void fraction than their counterparts made up of nonporous microgels, enhancing cell recruitment and tissue integration. This research may
Alexander Kedzierski+9 more
wiley +1 more source
Editorial: Cell structure and dynamics in the nematode <i>Caenorhabditis elegans</i>. [PDF]
Mierke CT.
europepmc +1 more source
A biofabricated 3D in vitro model recapitulating endochondral ossification (ECO) is described, mimicking the steps from condensation to chondrogenesis and hypertrophy, culminating with vascularization of the hypertrophic construct. As a model proof of concept application, Ewing Sarcoma cells are seeded in the model, showing modifications in their ...
Maria Vittoria Colombo+13 more
wiley +1 more source