Results 161 to 170 of about 129,978 (318)
This work establishes a correlation between solvent properties and the charge transport performance of solution‐processed organic thin films through interpretable machine learning. Strong dispersion interactions (δD), moderate hydrogen bonding (δH), closely matching and compatible with the solute (quadruple thiophene), and a small molar volume (MolVol)
Tianhao Tan, Lian Duan, Dong Wang
wiley +1 more source
Topology‐Aware Machine Learning for High‐Throughput Screening of MOFs in C8 Aromatic Separation
We screened 15,335 Computation‐Ready, Experimental Metal–Organic Frameworks (CoRE‐MOFs) using a topology‐aware machine learning (ML) model that integrates structural, chemical, pore‐size, and topological descriptors. Top‐performing MOFs exhibit aromatic‐enriched cavities and open metal sites that enable π–π and C–H···π interactions, serving as ...
Yu Li, Honglin Li, Jialu Li, Wan‐Lu Li
wiley +1 more source
Adeno‐associated virus serotype 2 capsid variants for improved liver‐directed gene therapy
Abstract Background and Aims Current liver‐directed gene therapies look for adeno‐associated virus (AAV) vectors with improved efficacy. With this background, capsid engineering is explored. Whereas shuffled capsid library screenings have resulted in potent liver targeting variants with one first vector in human clinical trials, modifying natural ...
Nadja Meumann +25 more
wiley +1 more source
The structure of PX3 (X = Cl, Br, I) molecular liquids from X-ray diffraction, molecular dynamics simulations, and reverse Monte Carlo modeling [PDF]
Szilvia Pothoczki +2 more
openalex +1 more source
A Generalized Framework for Data‐Efficient and Extrapolative Materials Discovery for Gas Separation
This study introduces an iterative supervised machine learning framework for metal‐organic framework (MOF) discovery. The approach identifies over 97% of the best performing candidates while using less than 10% of available data. It generalizes across diverse MOF databases and gas separation scenarios.
Varad Daoo, Jayant K. Singh
wiley +1 more source
Heat generation in lithium‐ion batteries affects performance, aging, and safety, requiring accurate thermal modeling. Traditional methods face efficiency and adaptability challenges. This article reviews machine learning‐based and hybrid modeling approaches, integrating data and physics to improve parameter estimation and temperature prediction ...
Qi Lin +4 more
wiley +1 more source
This study reveals that sampling strategy (i.e., sampling size and approach) is a foundational prerequisite for building accurate and generalizable AI models in peptide discovery. Reaching a threshold of 7.5% of the total tetrapeptide sequence space was essential to ensure reliable predictions.
Meiru Yan +3 more
wiley +1 more source
A machine learning method, opt‐GPRNN, is presented that combines the advantages of neural networks and kernel regressions. It is based on additive GPR in optimized redundant coordinates and allows building a representation of the target with a small number of terms while avoiding overfitting when the number of terms is larger than optimal.
Sergei Manzhos, Manabu Ihara
wiley +1 more source
The polymerase chain reaction (PCR).Perturbation Theory and Machine Learning framework integrates perturbation theory and machine learning to classify genetic sequences, distinguishing ancient DNA from modern controls and predicting tree health from soil metagenomic data.
Jose L. Rodriguez +19 more
wiley +1 more source
Modeling Oxidative Stress-Linked Telogen Effluvium Using Monte Carlo Simulation of Published Trichoscopy Norms and Cannabis Exposure Distributions. [PDF]
Chadha A, Burmeister M, Poelker-Wells S.
europepmc +1 more source

