Results 241 to 250 of about 333,902 (325)

Sampling Strategy: An Overlooked Factor Affecting Artificial Intelligence Prediction Accuracy of Peptides’ Physicochemical Properties

open access: yesAdvanced Intelligent Discovery, EarlyView.
This study reveals that sampling strategy (i.e., sampling size and approach) is a foundational prerequisite for building accurate and generalizable AI models in peptide discovery. Reaching a threshold of 7.5% of the total tetrapeptide sequence space was essential to ensure reliable predictions.
Meiru Yan   +3 more
wiley   +1 more source

Enhancing interpretability for Bayesian basket trial designs by effective sample size. [PDF]

open access: yesBMC Med Res Methodol
Chen X   +5 more
europepmc   +1 more source

Advancing Efficient Error Reduction in DNA Data Storage Systems with Deep Learning‐Based Denoising Models

open access: yesAdvanced Intelligent Discovery, EarlyView.
Deep learning‐based denoising models are applied to DNA data storage systems to enhance error reduction and data fidelity. By integrating DnCNN with DNA sequence encoding methods, the study demonstrates significant improvements in image quality and correction of substitution errors, revealing a promising path toward robust and efficient DNA‐based ...
Seongjun Seo   +5 more
wiley   +1 more source

Predicting tourism growth in Saudi Arabia with machine learning models for vision 2030 perspective. [PDF]

open access: yesSci Rep
Alsulami AG   +5 more
europepmc   +1 more source

Toward Predictable Nanomedicine: Current Forecasting Frameworks for Nanoparticle–Biology Interactions

open access: yesAdvanced Intelligent Discovery, EarlyView.
Predictive models successfully screen nanoparticles for toxicity and cellular uptake. Yet, complex biological dynamics and sparse, nonstandardized data limit their accuracy. The field urgently needs integrated artificial intelligence/machine learning, systems biology, and open‐access data protocols to bridge the gap between materials science and safe ...
Mariya L. Ivanova   +4 more
wiley   +1 more source

Machine Learning Driven Inverse Design of Broadband Acoustic Superscattering

open access: yesAdvanced Intelligent Discovery, EarlyView.
Multilayer acoustic superscatterers are designed using machine learning to achieve broadband superscattering and strong sound insulation. By incorporating a weighted mean absolute error into the loss function, the forward and inverse neural networks accurately map structural parameters to spectral responses.
Lijuan Fan, Xiangliang Zhang, Ying Wu
wiley   +1 more source

Home - About - Disclaimer - Privacy