Results 121 to 130 of about 1,699,128 (261)
Self-paced Multi-view Learning for CT-based severity assessment of COVID-19. [PDF]
Liu Y +6 more
europepmc +1 more source
Selective Benzene Capture by Metal‐Organic Frameworks
Metal‐organic frameworks (MOFs) hold significant potential for capturing benzene from air emissions and hydrocarbon mixtures in liquid phases. This capability stems from their precisely engineered structures, versatile chemistries, and diverse binding interactions.
Zongsu Han +4 more
wiley +1 more source
scAWMV: an adaptively weighted multi-view learning framework for the integrative analysis of parallel scRNA-seq and scATAC-seq data. [PDF]
Zeng P, Ma Y, Lin Z.
europepmc +1 more source
This study introduces a novel multi‐scale scaffold design using L‐fractals arranged in Archimedean tessellations for tissue regeneration. Despite similar porosity, tiles display vastly different tensile responses (1–100 MPa) and deformation modes. In vitro experiments with hMSCs show geometry‐dependent growth and activity. Over 55 000 tile combinations
Maria Kalogeropoulou +4 more
wiley +1 more source
Human gut microbiome aging clocks based on taxonomic and functional signatures through multi-view learning. [PDF]
Chen Y +9 more
europepmc +1 more source
In recent years, multi-view multi-label learning has garnered considerable attention due to its broad application prospects, such as bioinformatics and medical imaging.
Yishan Jiang +4 more
doaj +1 more source
Electroactive Metal–Organic Frameworks for Electrocatalysis
Electrocatalysis is crucial in sustainable energy conversion as it enables efficient chemical transformations. The review discusses how metal–organic frameworks can revolutionize this field by offering tailorable structures and active site tunability, enabling efficient and selective electrocatalytic processes.
Irena Senkovska +7 more
wiley +1 more source
Bio‐based and (semi‐)synthetic zwitterion‐modified novel materials and fully synthetic next‐generation alternatives show the importance of material design for different biomedical applications. The zwitterionic character affects the physiochemical behavior of the material and deepens the understanding of chemical interaction mechanisms within the ...
Theresa M. Lutz +3 more
wiley +1 more source
Unleashing the Power of Machine Learning in Nanomedicine Formulation Development
A random forest machine learning model is able to make predictions on nanoparticle attributes of different nanomedicines (i.e. lipid nanoparticles, liposomes, or PLGA nanoparticles) based on microfluidic formulation parameters. Machine learning models are based on a database of nanoparticle formulations, and models are able to generate unique solutions
Thomas L. Moore +7 more
wiley +1 more source

