Results 261 to 270 of about 1,555,294 (317)
Some of the next articles are maybe not open access.
Journal of Quality Technology, 1971
(1971). Multiple Linear Regression. Journal of Quality Technology: Vol. 3, No. 4, pp. 184-189.
openaire +1 more source
(1971). Multiple Linear Regression. Journal of Quality Technology: Vol. 3, No. 4, pp. 184-189.
openaire +1 more source
2001
Multiple linear regression represents a generalization to more than a single explanatory variable of the simple linear regression model introduced in Chapter 4. The aim of this type of regression is to model the relationship between a random response variable and a number of explanatory variables.
Brian Everitt, Sophia Rabe-Hesketh
openaire +1 more source
Multiple linear regression represents a generalization to more than a single explanatory variable of the simple linear regression model introduced in Chapter 4. The aim of this type of regression is to model the relationship between a random response variable and a number of explanatory variables.
Brian Everitt, Sophia Rabe-Hesketh
openaire +1 more source
2018
This chapter intends to develop a mathematical model that allows predicting, with an acceptable degree of uncertainty, the energy consumption and CO2 emissions for the office buildings in Chile. Through the multivariable regression method, diverse equations will be produced that will bear in mind the parameters mentioned for the different locations. In
Carlos Rubio-Bellido +2 more
openaire +1 more source
This chapter intends to develop a mathematical model that allows predicting, with an acceptable degree of uncertainty, the energy consumption and CO2 emissions for the office buildings in Chile. Through the multivariable regression method, diverse equations will be produced that will bear in mind the parameters mentioned for the different locations. In
Carlos Rubio-Bellido +2 more
openaire +1 more source
2003
In den vorangegangenen Kapiteln haben wir uns auf Falle konzentriert, in denen es um die Beschreibung der Abhangigkeit eines einzigen Regressanden Y von nur einem oder nur zwei Regressoren X und Z ging. Mehr als zwei Regressoren kamen bisher nur am Rande vor, etwa als Spezialfall der bedingten linearen Regression in Kapitel 10.
openaire +1 more source
In den vorangegangenen Kapiteln haben wir uns auf Falle konzentriert, in denen es um die Beschreibung der Abhangigkeit eines einzigen Regressanden Y von nur einem oder nur zwei Regressoren X und Z ging. Mehr als zwei Regressoren kamen bisher nur am Rande vor, etwa als Spezialfall der bedingten linearen Regression in Kapitel 10.
openaire +1 more source

